Russian version English version
Volume 13   Issue 2   Year 2018
Klyshnikov K.Yu., Ovcharenko E.A., Batranin A.V., Dolgov D.A., Zakharov Yu.N., Ivanov K.S., Kudryavtseva Yu.A., Shokin Yu.I., Barbarash L.S.

Computer Modeling of Fluid Flow through the Heart Valve Bioprosthesis

Mathematical Biology & Bioinformatics. 2018;13(2):337-347.

doi: 10.17537/2018.13.337.

References

 

  1. Barbarash L.S., Karas'kov A.M., Semenovskii M.L., Zhuravleva I.Iu., Odarenko Iu.N., Vavilov P.A., Nokhrin A.V., Astapov D.A. Patologiia krovoobrashcheniia i kardiokhirurgiia (Pathology of blood circulation and heart surgery). 2011(2):21-26 (in Russ.).
  2. Bokeriia L.A., Gudkova R.G. Serdechno-sosudistaia khirurgiia-2014: bolezni i vrozhdennye anomalii sistemy krovoobrashcheniia (Cardiovascular Surgery 2014: Diseases and Congenital Anomalies of the Circulatory System). Moscow; 2015. 225 p. (in Russ.).
  3. Arai T., Lefèvre T., Hovasse T., Morice M.C., Garot P., Benamer H., Unterseeh T., Hayashida K., Watanabe Y., Bouvier E., et al. Comparison of Edwards SAPIEN 3 versus SAPIEN XT in transfemoral transcatheter aortic valve implantation: Difference of valve selection in the real world. J. Cardiol. 2017;69(3):565-569. doi: 10.1016/j.jjcc.2016.04.012
  4. Moore M., Barnhart G.R., Chitwood W.R. Jr, Rizzo J.A., Gunnarsson C., Palli S.R., Grossi E.A. The economic value of INTUITY in aortic valve replacement. J. Med Econ. 2016;19(10):1011-1017. doi: 10.1080/13696998.2016.1220949
  5. Evdokimov S.V., Baulin A.V., Evdokimov M.E., Serov E.S., Bariaev G.I., Golovin I.A., Efimova I.V., Seredin A.S. Nekotorye osobennosti organizatsii provedeniia khirurgicheskogo eksperimenta na svin'iakh. Uspekhi Sovremennogo Estestvoznaniia (Successes of modern natural history). 2015;1(5):756-759. (in Russ.).
  6. Khizhenok V.F., Shil'ko S.V. Rossiiskii zhurnal biomekhaniki (Russian Journal of Biomechanics). 2006;10(4):52-61 (in Russ.).
  7. Gaetano F.D., Bagnoli P., Zaffora A., Pandolfi A., Serrani M., Brubert J., Costantino M.L. A newly developed tri-leaflet polymeric heart valve prosthesis. Journal of Mechanics in Medicine and Biology. 2015;15(2):1540009. doi: 10.1142/S0219519415400096
  8. Dasi L.P., Simon H.A., Sucosky P., Yoganathan A.P. Fluid mechanics of artificial heart valves. Clinical and Experimental Pharmacology & Physiology. 2009;36(2):225-237. doi: 10.1111/j.1440-1681.2008.05099.x
  9. Bao S. Mechanical stress. Handb Clin Neurol. 2015;131:367-396. doi: 10.1016/B978-0-444-62627-1.00019-6
  10. Bokeriia L.A. Skopin I.I., Sazonov M.A., Tumaev E.N. Klinicheskaia fiziologiia krovoobrashcheniia (Clinical physiology of blood circulation). 2008;2:73-80 (in Russ.).
  11. Weinberg E. Dynamic simulation of heart mitral valve with transversely isotropic material model. Massachusetts Institute of Technology; 2005. 76 p.
  12. Shil'ko S.V., Khizhenok V.F., Salivonchik S.P. Rossiiskii zhurnal biomekhaniki (Russian Journal of Biomechanics). 2005;9(1):63-74 (in Russ.).
  13. Le T.B., Sotiropoulos F. Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. Journal of Computational Physics. 2013;244:41-62. doi: 10.1016/j.jcp.2012.08.036
  14. Borazjani I. A review of fluid-structure interaction simulations of prosthetic heart valves. J. Long. Term. Eff. Med. Implants. 2015;25(1-2):75-93. doi: 10.1615/JLongTermEffMedImplants.2015011791
  15. Stuchebrov S.G., Batranin A.V., Miloichikova I.A., Krasnykh A.A., Danilova I.B. Vestnik Natsional'nogo issledovatel'skogo iadernogo universiteta MIFI (Bulletin of the National Nuclear Research University MEPI). 2017;6(1):31-36 (in Russ.).
  16. Batranin A.V., Chakhlov S.V., Kapranov B.I., Klimenov V.A., Grinev D.V. Design of the x-ray micro-ct scanner tolmi-150-10 and its perspective application in non-destructive evaluation. Applied Mechanics and Materials. 2013;379:3-10. doi: 10.4028/www.scientific.net/AMM.379.3
  17. Peskin C.S. The immersed boundary method. Acta Numerica. 2002;11:479-517. doi: 10.1017/S0962492902000077
  18. Doldov D., Zakharov Y., Shokin Y. Numerical simulation of the performance of on artificial heart valve. Russian journal of numerical analysis and mathematical modeling. 2016;31(4):229-238. doi: 10.1515/rnam-2016-0023
  19. Belotserkovskii O.M. Chislennoe modelirovanie v mekhanike sploshnykh sred (Numerical modeling in continuum mechanics). Moscow; 1994. 448 p. (in Russ.).
  20. Yanenko N.N. The Method of Fractional Steps. The Solution of Problems of Mathematical Physics in Several Variables. Springer-Verlag Berlin Heidelberg; 1971.
  21. Griffith B.E. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. International Journal for Numerical Methods in Biomedical Engineering. 2012;28(3):317-345. doi: 10.1002/cnm.1445
  22. Mohammadi H., Cartier R., Mongrain R. 3D physiological model of the aortic valve incorporating small coronary arteries. Int. J. Numer. Method Biomed. Eng. 2017;33(5). doi: 10.1002/cnm.2829
  23. Klyshnikov K.Iu., Ovcharenko E.A., Mal'tsev D.A., Zhuravleva I.Iu. Klinicheskaia fiziologiia krovoobrashcheniia (Clinical physiology of blood circulation). 2013;1:45-51 (in Russ.).
Table of Contents Original Article
Math. Biol. Bioinf.
2018;13(2):337-347
doi: 10.17537/2018.13.337
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024