Russian version English version
Volume 13   Issue 2   Year 2018
Rudolf P. Trenkenshu , Alexander S. Lelekov

Modeling of Dynamics of Nitrogenous Compounds in Microalgae Cells. 1. Batch Culture

Mathematical Biology & Bioinformatics. 2018;13(2):348-359.

doi: 10.17537/2018.13.348.

References

 

  1. Sánchez-Saavedra M.P., Castro-Ochoa F.Y., Nava-Ruiz V.M., Ruiz-Güereca D.A., Villagómez-Aranda A.L., Siqueiros-Vargas F., Molina-Cárdenas C.A. Effects of nitrogen source and irradiance on Porphyridium cruentum. J. Appl. Phycol. 2017. doi: 10.1007/s10811-017-1284-2
  2. Silva C.E., Sforza E., Bertucco A. Stability of carbohydrate production in continuous microalgal cultivation under nitrogen limitation: effect of irradiation regime and intensity on Tetradesmus obliquus. J. Appl. Phycol. 2017.
  3. Ho S., Chen C., Chang J. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology. 2012;113:244–252. doi: 10.1016/j.biortech.2011.11.133
  4. Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. J. Plant. 2008;54(4):621–639. doi: 10.1111/j.1365-313X.2008.03492.x
  5. Podevin M., Francisci D., Holdt S. L., Angelidaki I. Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method. J. Appl. Phycol. 2015;27:1415–1423. doi: 10.1007/s10811-014-0468-2
  6. Gatenby C.M., Occurt D.M., Kreeger D.A., Parker B.C., Jones V.A., Neves R.J. Biochemical composition of three algal species proposed as food for captive freshwater mussels. J. Appl. Phycol. 2003;15(1):1–11. doi: 10.1023/A:1022929423011
  7. Kliphuis A.M.J., Klok A. J., Martens D.E., Lamers P.P., Janssen M., Wijffels R.H. Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance. J. Appl. Phycol. 2012;24:253–266. doi: 10.1007/s10811-011-9674-3
  8. Macintyre H.L., Kana T.M., Anning T., Geider R.J. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J. Phycol. 2002;38:17–38. doi: 10.1046/j.1529-8817.2002.00094.x
  9. Gudvilovych I.N., Borovkov A.B. Dunaliella salina Teod. microalgae productivity, when grown under the different addition of carbon dioxide in culture. Marine Biological Journal. 2017;2(2):34–40 (in Russ.). doi: 10.21072/mbj.2017.02.2.03
  10. Baroukh C., Muñoz-Tamayo R., Steyer J., Bernard O. DRUM: A new framework for metabolic modeling under non-balanced growth. Application to the carbon metabolism of unicellular microalgae. PLoS One. 2014. doi: 10.1371/journal.pone.0104499
  11. Shastri A.A., Morgan J.A. Flux balance analysis of photoautotrophic metabolism. Biotechnol. Prog. 2005;21:1617–1626. doi: 10.1021/bp050246d
  12. Minkevich I.G. Mathematical problems of metabolic pathway organization from biochemical reactions. Mathematical Biology and Bioinformatics. 2016;11(2):406–425 (in Russ.). doi: 10.17537/2016.11.406
  13. Ivlev A.A. Oscillatory Character of Carbon Metabolism in Photosynthesizing Cell According to Data on Carbon Isotope Composition. Biology Bulletin Reviews. 2011;131(2):178-192 (in Russ.).
  14. Rubin A.B., Krendeleva T.E. Reguliatsiia pervichnykh protsessov fotosinteza. Uspekhi biologicheskoi khimii (Advances in biological chemistry). 2003;43:225-266 (in Russ.).
  15. Krasnovsky A.A. Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies. Membr. Cell Biol. 1998;12(5):665-690.
  16. Trenkenshu R.P., Lelekov A.S. Model of transformation of the nitrogen compounds by microalgae cells. Issues of Modern Algology. 2018;1(16).
  17. Droop M. R. Some thoughts on nutrient limitation in algae. J. Phycol. 1973;9:264-272. doi: 10.1111/j.1529-8817.1973.tb04092.x
  18. Trenkenshu R.P. Kinetika substratzavisimykh reaktsii pri razlichnoi organizatsii metabolicheskikh sistem (Kinetics of substrate dependent reactions in various organization of metabolic systems). Sevastopol'; 2005. 89 p. (in Russ.).
  19. Trenkenshu R.P., Lelekov A.S. Modelirovanie rosta mikrovodoroslei v kul'ture (Modeling growth of microalgae in culture). Sevastopol', 2017. 152 p. doi: 10.21072/978-5-906952-28-8
  20. Blackman F. F. Optima and limiting factors. Ann. Bot. Lond. 1905;19:281-295. doi: 10.1093/oxfordjournals.aob.a089000
  21. Perez-Garcia O., Escalante F., de-Bashan L., Bashan Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research. 2011;45(1):11-36. doi: 10.1016/j.watres.2010.08.037
  22. Sanz-Luque E., Chamizo-Ampudia A., Llamas A., Galvan A., Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. Front. Plant. Sci. 2015;6:899. doi: 10.3389/fpls.2015.00899
  23. Gorbunova S.Yu., Lelekov A.S., Borovkov A.B. Dynamics of nitrogen and phosphorus in medium at intensive cultivation of microalgae Dunaliella salina. Ekologiia moria (Ecology of the sea). 2007;74:21-24 (in Russ.).
  24. Lelekov A.S., Gudvilovich I.N. Production characteristics of semicontinuous culture of green algae Dunaliella salina Teod. growth and biosynthesis. Ekologiia moria (Ecology of the sea). 2010;80:59-66 (in Russ.).
Table of Contents Original Article
Math. Biol. Bioinf.
2018;13(2):348-359
doi: 10.17537/2018.13.348
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024