Russian version English version
Volume 13   Issue 2   Year 2018
Andrianov A.M., Nikolaev G.I., Kashyn I.A., Tuzikov A.V.

Development of Potential HIV-1 Inhibitors by In Silico Click Chemistry And Molecular Modeling Methods

Mathematical Biology & Bioinformatics. 2018;13(2):507-525.

doi: 10.17537/2018.13.507.

References

 

  1. Arts E.J., Hazuda D.J. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med. 2012;2:a007161. doi: 10.1101/cshperspect.a007161
  2. Kumari G., Singh R.K. Highly active antiretroviral therapy for treatment of HIV/AIDS patients: current status and future prospects and the Indian scenario. HIV AIDS Rev. 2012;11:5-14. doi: 10.1016/j.hivar.2012.02.003
  3. Wang H-B., Mo Q-H., Yang Z. HIV vaccine research: The challenge and the way forward. J. Immunol. Res. 2015. 503978. doi: 10.1155/2015/503978
  4. De Clercq E. New approaches toward anti-HIV chemotherapy. J. Med. Chem. 2005;48:1297-1313. doi: 10.1021/jm040158k
  5. Este J.A., Telenti A. HIV entry inhibitors. Lancet. 2007;370:81-88. doi: 10.1016/S0140-6736(07)61052-6
  6. Rusconi S., Scozzafava A., Mastrolorenzo A., Supuran C.T. An update in the development of HIV entry inhibitors. Curr. Topics in Med. Chem. 2007;7:1273-1289. doi: 10.2174/156802607781212239
  7. Ryser H.J.P., Fluckiger R. Progress in targeting HIV-1 entry. Drug Discov. Today. 2005;10:1085-1094. doi: 10.1016/S1359-6446(05)03550-6
  8. Adamson C.S., Freed E.O. Novel approaches to inhibiting HIV-1 replication. Antiviral. Res. 2010;85:119-141. doi: 10.1016/j.antiviral.2009.09.009
  9. Tilton J.C., Doms R.W. Entry inhibitors in the treatment of HIV-1 infection. Antiviral Res. 2010;85:91-100. doi: 10.1016/j.antiviral.2009.07.022
  10. Orsega S. Treatment of adult HIV infection: antiretroviral update and overview. JNP. 2007;10:612-624. doi: 10.1016/j.nurpra.2007.08.022
  11. Matthews T., Salgo M., Greenberg M., Chung J., DeMasi R., Bolognesi D. Enfuvirtide: The first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nat. Rev. Drug Discov. 2004;3:215-225. doi: 10.1038/nrd1331
  12. MacArthur R.D., Novak R.M. Maraviroc: The first of a new class of antiretroviral agents. Clin. Infect. Dis. 2008;47:236-241. doi: 10.1086/589289
  13. Wilen C.B., Tilton J.C., Doms R.W. HIV: Cell binding and entry. Cold Spring Harb. Perspect. Med. 2012;2. a006866. doi: 10.1101/cshperspect.a006866
  14. Courter J.R., Madani N., Sodroski J., Schön A., Freire E., Kwong P.D., Hendrickson W.A., Chaiken I.M., LaLonde J.M., Smith A.B. III. Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: Conversion of a viral entry agonist to an antagonist. Acc. Chem. Res. 2014;47:1228-1237. doi: 10.1021/ar4002735
  15. Liu Y., Schön A., Freire E. Optimization of CD4/gp120 inhibitors by thermodynamic-guided alanine-scanning mutagenesis. Chem. Biol. Drug Des. 2013;81:72-78. doi: 10.1111/cbdd.12075
  16. Morellato-Castillo L., Acharya P., Combes O., Michiels J., Descours A., Ramos O.H.P., Yang Y., Guido Vanham G., Ariën K.K., Kwong P.D., Martin L., Kessler P. Interfacial cavity filling to optimize CD4-mimetic miniprotein interactions with HIV-1 surface glycoprotein. J. Med. Chem. 2013;56:5033-5047. doi: 10.1021/jm4002988
  17. Acharya P., Lusvarghi S., Bewley C.A., Kwong P.D. HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth. Expert Opin. Ther. Targets. 2015;19:1-19. doi: 10.1517/14728222.2015.1010513
  18. Li W., Lu L., Li W., Jiang S. Small-molecule HIV-1 entry inhibitors targeting gp120 and gp41: a patent review (2010-2015). Expert Opin. Ther. Pat. 2017;27(6):707-719.
  19. Kwong P.D., Wyatt R., Robinson J., Sweet R.W., Sodroski J., Hendrickson W.A. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 1998;393:648-659. doi: 10.1038/31405
  20. Andrianov A.M. Konformatsionnyi analiz belkov. Teoriia i prilozheniia (Conformational analysis of proteins. Theory and Applications). Minsk; 2013. 518 p. (in Russ.).
  21. Sliwoski G., Kothiwale S., Meiler J., Lowe E.W. Jr. Computational methods in drug discovery. Pharmacol. Rev. 2014;66(1):334-395. doi: 10.1124/pr.112.007336
  22. Kolb H.C., Finn M.G., Sharpless K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001;40(11):2004-2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
  23. Moses J.E., Moorhouse A.D. The growing applications of click chemistry. Chem. Soc. Rev. 2007;36:1249-1262. doi: 10.1039/B613014N
  24. Thirumurugan P., Matosiuk D., Jozwiak K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev. 2013;113(7):4905-4979. doi: 10.1021/cr200409f
  25. Andrianov A.M., Kornoushenko Yu.V., Kashyn I.A., Tuzikov A.V. Computer-Aided Design of Novel HIV-1 Entry Inhibitors Based on Glycosphingolipids. Mathematical Biology and Bioinformatics. 2013;8(1):258-275 (in Russ.). doi: 10.17537/2013.8.258
  26. Andrianov A.M., Kashyn I.A., Tuzikov A.V. Computer-Aided Search for Novel Anti-Hiv-1 Agents Presenting Peptidomimetics of Neutralizing Antibodies and Evaluation of their Potential Inhibitory Activity by Molecular Modeling. Mathematical Biology and Bioinformatics. 2013;8(1):119-134 (in Russ.). doi: 10.17537/2013.8.119
  27. Kashyn I.A., Tuzikov A.V., Andrianov A.M. Virtual Screening of Novel Hiv-1 Entry Inhibitors Blocking Cd4-Binding Site of the Virus Envelope Gp120 Protein. Mathematical Biology and Bioinformatics. 2014;9(2):359-372 (in Russ.). doi: 10.17537/2014.9.359
  28. Kashyn I.A., Tuzikov A.V., Andrianov A.M. Identification of Novel Potential Inhibitors of the HIV-1 gp41 Protein by Virtual Screening and Molecular Modeling Methods. Mathematical Biology and Bioinformatics. 2015;10(2):325-343 (in Russ.). doi: 10.17537/2015.10.325
  29. Andrianov A.M., Kashyn I.A., Tuzikov A.V. Computational discovery of novel HIV-1 entry inhibitors based on potent and broad neutralizing antibody VRC01. J. Mol. Graph. Model. 2015;61:262-271. doi: 10.1016/j.jmgm.2015.08.003
  30. Andrianov A.M., Kashyn I.A., Tuzikov A.V. Identification of novel HIV-1 fusion inhibitor scaffolds by virtual screening, high-throughput docking and molecular dynamics simulations. JSM Chem. 2016;4(2):1022.
  31. Andrianov A.M., Kashyn I.A., Tuzikov A.V. Computational identification of novel entry inhibitor scaffolds mimicking primary receptor CD4 of HIV-1 gp120. J. Mol. Model. 2017;23:1-18. doi: 10.1007/s00894-016-3189-4
  32. Andrianov A.M., Kashyn I.A., Tuzikov A.V. Potential HIV-1 fusion inhibitors mimicking gp41-specific broadly neutralizing antibody 10E8: In silico discovery and prediction of antiviral potency. J. Bioinform. Comput. Biol. 2018;4(4):1022. doi: 10.1142/S0219720018400073
  33. Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001;46(1-3):3-26. doi: 10.1016/S0169-409X(00)00129-0
  34. Irwin J.J., Shoichet B.K. ZINC - a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005;45(1):177-182. doi: 10.1021/ci049714+
  35. Irwin J.J., Sterling T., Mysinger M.M., Bolstad E.S., Coleman R.G. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 2012;52(7):1757-1768. doi: 10.1021/ci3001277
  36. Courter J.R., Madani N., Sodroski J., Schön A., Freire E., Kwong P.D., Hendrickson W.A., Chaiken I.M., LaLonde J.M., Smith A.B., III. Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: Conversion of a viral entry agonist to an antagonist. Acc. Chem. Res. 2014;47(4):1228-1237. doi: 10.1021/ar4002735
  37. Curreli F., Kwon Y.D., Zhanga H., Scacalossi D., Belov D.S., Tikhonov A.A., Andreev I.A., Altieric A., Kurkin A.V., Kwong P.D., Debnath A.K. Structure-based design of a small molecule CD4-antagonist with broad spectrum anti-HIV-1 activity. J. Med. Chem. 2015;58(17):6909-6927. doi: 10.1021/acs.jmedchem.5b00709
  38. Durrant J.D., McCammon J.A. AutoClickChem: Click chemistry in silico. PLoS Comput. Biol. 2012;8(3):e1002397.
  39. Alhossary A., Handoko S.D., Mu Y., Kwoh C.K. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinform. 2015;31(13):2214-2216. doi: 10.1093/bioinformatics/btv082
  40. Trott O., Olson A.J. Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455-461.
  41. Durrant J.D., McCammon J.A. BINANA: A novel algorithm for ligand-binding characterization. J. Mol. Graph. Model. 2011;29:888-893. doi: 10.1016/j.jmgm.2011.01.004
  42. McDonald I.K., Thornton J.M. Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 1994;238:777-793. doi: 10.1006/jmbi.1994.1334
  43. Case D.A., Darden T.A., Cheatham T.E., Simmerling C.L., Wang J., Duke R.E., Luo R., Crowley M., Walker R.C., Zhang W., Merz K.M., Wang B., Hayik S., Roitberg A., Seabra G., Kolossváry I., Wong K.F., Paesani F., Vanicek J., Wu X., Brozell S.R., Steinbrecher T., Gohlke H., Yang L., Tan C., Mongan J., Hornak V., Cui G., Mathews D.H., Seetin M.G., Sagui C., Babin V., Kollman P.A. AMBER 11. San Francisco: University of California, 2010.
  44. Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926-935. doi: 10.1063/1.445869
  45. Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general Amber force field. J. Comput. Chem. 2004;25:1157-1174. doi: 10.1002/jcc.20035
  46. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684-3690. doi: 10.1063/1.448118
  47. Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327-341. doi: 10.1016/0021-9991(77)90098-5
  48. Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577-8593. doi: 10.1063/1.470117
  49. Massova I., Kollman P.A. Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J. Am. Chem. Soc. 1999;121:8133-8143. doi: 10.1021/ja990935j
  50. Miller III B.R., McGee Jr. T.D., Swails J.M., Homeyer N., Gohlke H., Roitberg A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012;8:3314-3321. doi: 10.1021/ct300418h
  51. Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J.L., Dror R.O., Shaw D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950-1958. doi: 10.1002/prot.22711
  52. Moebius U., Clayton L.K., Abraham S., Harrison S.C., Reinherz E.L. The human immunodeficiency virus-gp120 binding-site on CD4 - Delineation by quantitative equilibrium and kinetic binding studies of mutants in conjunction with a high-resolution CD4 atomic-structure. J. Exp. Med. 1992;176(2):507-517. doi: 10.1084/jem.176.2.507
  53. Olshevsky U., Helseth E., Furman C., Li J., Haseltine W., Sodroski J. Identification of individual human-immunodeficiency-virus type-1 gp120 amino-acids important for CD4 receptor-binding. J. Virol. 1990;64(12):5701-5707.
  54. Zhao Q., Ma L., Jiang S., Lu H., Liu S., He Y., Strick N., Neamati N., Debnath A.K. Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4. Virology. 2005;339(2):213-225. doi: 10.1016/j.virol.2005.06.008
  55. Myszka D.G., Sweet R.W., Hensley P., Brigham-Burke M., Kwong P.D., Hendrickson W.A., Wyatt R., Sodroski J., Doyle M.L. Energetics of the HIV gp120-CD4 binding reaction. Proc. Natl. Acad. Sci. USA. 2000;97(16):9026-9031. doi: 10.1073/pnas.97.16.9026
  56. Brase S., Banert K. Organic Azides: Syntheses and applications. Wiley; 2009. 536 p. doi: 10.1002/9780470682517
Table of Contents Original Article
Math. Biol. Bioinf.
2018;13(2):507-525
doi: 10.17537/2018.13.507
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024