References
- Rooney T.A., Sass E.J., Thomas A.P. Agonist-induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes. Journal of Biological Chemistry. 1990;265:10792-10796.
- Garcin I., Tordjmann T. Calcium signalling and liver regeneration. International Journal of Hepatology. 2012;2012:1-6.
- Jafri M.S. Joel K. On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves. Biophysical Journal. 1995;69:2139-2153. doi: 10.1016/S0006-3495(95)80088-3
- Dupont G. Swillens S. Clair C. Tordjmann T. Hierarchical organization of calcium signals in hepatocytes : from experiments to models. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2000;1498:134-152.
- Sneyd J. Calcium buffering and diffusion: on the resolution of an outstanding problem. Biophysical Journal. 1994;67:4. doi: 10.1016/S0006-3495(94)80448-5
- Tewari S. Pardasani K.R. Finite element model to study two dimensional unsteady state cytosolic calcium diffusion in presence of excess buffers. IAENG International Journal of Applied Mathematics. 2010;40:108-112.
- Jha A. Adlakha N. Finite element model to study the effect of exogenous buffer on calcium dynamics in dendritic spines. International Journal of Modeling, Simulation, and Scientific Computing. 2014;5:350027. doi: 10.1142/S179396231350027X
- Kotwani M. Adlakha N. Modeling of endoplasmic reticulum and plasma membrane Ca2+ uptake and release fluxes with excess buffer approximation (EBA) in fibroblast cell. International Journal of Computational Materials Science and Engineering. 2017;6:1750004. doi: 10.1142/S204768411750004X
- Kotwani M. Adlakha N. Finite element model to study the effect of buffers, source amplitude and source geometry on spatio-temporal calcium distribution in fibroblast cell. Journal of Medical Imaging and Health Informatics. 2014;4:840-847. doi: 10.1166/jmihi.2014.1328
- Jha B.K. Adlakha N. Mehta M.N. Two-dimensional finite element model to study calcium distribution in astrocytes in presence of VGCC and excess buffer. Int. J. Model. Simul. Sci. Comput. 2013;4:1250030. doi: 10.1142/S1793962312500304
- Jha B.K. Adlakha N. Mehta M.N. Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer. International Journal of Biomathematics. 2014;7:1450031. doi: 10.1142/S1793524514500314
- Naik P.A. Pardasani K.R. One Dimensional Finite Element Model to Study Calcium Distribution in Oocytes in Presence of VGCC, RyR and Buffers. J. Medical Imaging Health Informatics. 2015;5:471-476. doi: 10.1166/jmihi.2015.1431
- Pathak K. Adlakha N. Finite Element Model to Study Calcium Signaling in Cardiac Myocytes Involving Pump, Leak and Excess Buffer. Journal of Medical Imaging and Health Informatics. 2015;5:1-6. doi: 10.1166/jmihi.2015.1443
- Pathak K. Adlakha N. Finite element model to study two dimensional unsteady state calcium distribution in cardiac myocytes. Alexandria Journal of Medicine. 2016;52:261-268. doi: 10.1016/j.ajme.2015.09.007
- Jagtap Y.D. Adlakha N. Finite volume simulation of two dimensional calcium dynamics in a hepatocyte cell involving buffers and fluxes. Commun. Math. Biol. Neurosci. 2018;2018:1-16.
- Jha A. Adlakha N. Two-dimensional finite element model to study unsteady state Ca2+ diffusion in neuron involving ER LEAK and SERCA. International Journal of Biomathematics. 2015;89:1550002. doi: 10.1142/S1793524515500023
- Naik P.A. Pardasani K.R. One dimensional finite element method approach to study effect of ryanodine receptor and serca pump on calcium distribution in oocytes. Journal of Multiscale Modelling. 2013;5:1350007. doi: 10.1142/S1756973713500078
- Panday S. Pardasani K.R. Finite element model to study the mechanics of calcium regulation in oocyte. Journal of Mechanics in Medicine and Biology. 2014;14:1450022. doi: 10.1142/S0219519414500225
- Manhas N. Pardasani K.R. Modelling mechanism of calcium oscillations in pancreatic acinar cells. Journal of Bioenergetics and Biomembranes. 2014;46:403-420. doi: 10.1007/s10863-014-9561-0
- Manhas N. Sneyd J. Pardasani K.R. Modelling the transition from simple to complex Ca2+ oscillations in pancreatic acinar cells. Journal of Biosciences. 2014;39:463-484. doi: 10.1007/s12038-014-9430-3
- Jha B. Adlakha N. Mehta M.N. Finite volume model to study the effect of buffer on cytosolic Ca2+ advection diffusion. Int. J. of Eng. and Nat. Sci. 2010;4:60-163.
- Pathak K. Adlakha N. Finite Element Simulation of Advection Diffusion of Calcium in Myocyes Involving Influx and Excess Buffer. Advances in Computational Sciences and Technology. 2017;10:11-23.
- Panday S. Pardasani K.R. Finite Element Model to Study Effect of Advection Diffusion and Na+/ Ca2+ Exchanger on Ca2+ Distribution in Oocytes. Journal of Medical Imaging and Health Informatics. 2013;3:374-379. doi: 10.1166/jmihi.2013.1184
- Keener J.P. Sneyd J. In: Mathematical physiology. Springer, 1998:309-313.
- In: Calcium: The molecular basis of calcium action in biology and medicine. Eds. R. Pochet, R. Donato, J. Haiech, C.W. Heizmann, V. Gerke. Springer Science \& Business Media; 2011. V. 3. P. 73-94.
- Thomas A.P. Bird GSTJ. Hajnoczky G. Gaspers R. Spatial and temporal aspects of cellular calcium signaling. The FASEB Journal. 1996:1505-1517. doi: 10.1096/fasebj.10.13.8940296
- Versteeg H.K., Malalasekera W. In: An introduction to computational fluid dynamics: the finite volume method. Pearson Education; 2007.
|
|
|