Russian version English version
Volume 13   Issue 2   Year 2018
Jagtap Y.D., Adlakha N.

Simulation of Buffered Advection Diffusion of Calcium in a Hepatocyte Cell

Mathematical Biology & Bioinformatics. 2018;13(2):609-619.

doi: 10.17537/2018.13.609.

References

 

  1. Rooney T.A., Sass E.J., Thomas A.P. Agonist-induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes. Journal of Biological Chemistry. 1990;265:10792-10796.
  2. Garcin I., Tordjmann T. Calcium signalling and liver regeneration. International Journal of Hepatology. 2012;2012:1-6.
  3. Jafri M.S. Joel K. On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves. Biophysical Journal. 1995;69:2139-2153. doi: 10.1016/S0006-3495(95)80088-3
  4. Dupont G. Swillens S. Clair C. Tordjmann T. Hierarchical organization of calcium signals in hepatocytes : from experiments to models. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2000;1498:134-152.
  5. Sneyd J. Calcium buffering and diffusion: on the resolution of an outstanding problem. Biophysical Journal. 1994;67:4. doi: 10.1016/S0006-3495(94)80448-5
  6. Tewari S. Pardasani K.R. Finite element model to study two dimensional unsteady state cytosolic calcium diffusion in presence of excess buffers. IAENG International Journal of Applied Mathematics. 2010;40:108-112.
  7. Jha A. Adlakha N. Finite element model to study the effect of exogenous buffer on calcium dynamics in dendritic spines. International Journal of Modeling, Simulation, and Scientific Computing. 2014;5:350027. doi: 10.1142/S179396231350027X
  8. Kotwani M. Adlakha N. Modeling of endoplasmic reticulum and plasma membrane Ca2+ uptake and release fluxes with excess buffer approximation (EBA) in fibroblast cell. International Journal of Computational Materials Science and Engineering. 2017;6:1750004. doi: 10.1142/S204768411750004X
  9. Kotwani M. Adlakha N. Finite element model to study the effect of buffers, source amplitude and source geometry on spatio-temporal calcium distribution in fibroblast cell. Journal of Medical Imaging and Health Informatics. 2014;4:840-847. doi: 10.1166/jmihi.2014.1328
  10. Jha B.K. Adlakha N. Mehta M.N. Two-dimensional finite element model to study calcium distribution in astrocytes in presence of VGCC and excess buffer. Int. J. Model. Simul. Sci. Comput. 2013;4:1250030. doi: 10.1142/S1793962312500304
  11. Jha B.K. Adlakha N. Mehta M.N. Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer. International Journal of Biomathematics. 2014;7:1450031. doi: 10.1142/S1793524514500314
  12. Naik P.A. Pardasani K.R. One Dimensional Finite Element Model to Study Calcium Distribution in Oocytes in Presence of VGCC, RyR and Buffers. J. Medical Imaging Health Informatics. 2015;5:471-476. doi: 10.1166/jmihi.2015.1431
  13. Pathak K. Adlakha N. Finite Element Model to Study Calcium Signaling in Cardiac Myocytes Involving Pump, Leak and Excess Buffer. Journal of Medical Imaging and Health Informatics. 2015;5:1-6. doi: 10.1166/jmihi.2015.1443
  14. Pathak K. Adlakha N. Finite element model to study two dimensional unsteady state calcium distribution in cardiac myocytes. Alexandria Journal of Medicine. 2016;52:261-268. doi: 10.1016/j.ajme.2015.09.007
  15. Jagtap Y.D. Adlakha N. Finite volume simulation of two dimensional calcium dynamics in a hepatocyte cell involving buffers and fluxes. Commun. Math. Biol. Neurosci. 2018;2018:1-16.
  16. Jha A. Adlakha N. Two-dimensional finite element model to study unsteady state Ca2+ diffusion in neuron involving ER LEAK and SERCA. International Journal of Biomathematics. 2015;89:1550002. doi: 10.1142/S1793524515500023
  17. Naik P.A. Pardasani K.R. One dimensional finite element method approach to study effect of ryanodine receptor and serca pump on calcium distribution in oocytes. Journal of Multiscale Modelling. 2013;5:1350007. doi: 10.1142/S1756973713500078
  18. Panday S. Pardasani K.R. Finite element model to study the mechanics of calcium regulation in oocyte. Journal of Mechanics in Medicine and Biology. 2014;14:1450022. doi: 10.1142/S0219519414500225
  19. Manhas N. Pardasani K.R. Modelling mechanism of calcium oscillations in pancreatic acinar cells. Journal of Bioenergetics and Biomembranes. 2014;46:403-420. doi: 10.1007/s10863-014-9561-0
  20. Manhas N. Sneyd J. Pardasani K.R. Modelling the transition from simple to complex Ca2+ oscillations in pancreatic acinar cells. Journal of Biosciences. 2014;39:463-484. doi: 10.1007/s12038-014-9430-3
  21. Jha B. Adlakha N. Mehta M.N. Finite volume model to study the effect of buffer on cytosolic Ca2+ advection diffusion. Int. J. of Eng. and Nat. Sci. 2010;4:60-163.
  22. Pathak K. Adlakha N. Finite Element Simulation of Advection Diffusion of Calcium in Myocyes Involving Influx and Excess Buffer. Advances in Computational Sciences and Technology. 2017;10:11-23.
  23. Panday S. Pardasani K.R. Finite Element Model to Study Effect of Advection Diffusion and Na+/ Ca2+ Exchanger on Ca2+ Distribution in Oocytes. Journal of Medical Imaging and Health Informatics. 2013;3:374-379. doi: 10.1166/jmihi.2013.1184
  24. Keener J.P. Sneyd J. In: Mathematical physiology. Springer, 1998:309-313.
  25. In: Calcium: The molecular basis of calcium action in biology and medicine. Eds. R. Pochet, R. Donato, J. Haiech, C.W. Heizmann, V. Gerke. Springer Science \& Business Media; 2011. V. 3. P. 73-94.
  26. Thomas A.P. Bird GSTJ. Hajnoczky G. Gaspers R. Spatial and temporal aspects of cellular calcium signaling. The FASEB Journal. 1996:1505-1517. doi: 10.1096/fasebj.10.13.8940296
  27. Versteeg H.K., Malalasekera W. In: An introduction to computational fluid dynamics: the finite volume method. Pearson Education; 2007.
Table of Contents Original Article
Math. Biol. Bioinf.
2018;13(2):609-619
doi: 10.17537/2018.13.609
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)
References

 

  Copyright IMPB RAS © 2005-2024