Russian version English version
Volume 14   Issue 1   Year 2019
Bystrov V.S.1, Zelenovskiy P.S.2, 3, Nuraeva A.S.2, Kopyl S.3, Zhulyabina O.A.4, Tverdislov V.A.4

Chiral Peculiar Properties of Self-Organization of Diphenylalanine Peptide Nanotubes: Modeling Of Structure and Properties

Mathematical Biology & Bioinformatics. 2019;14(1):94-125.

doi: 10.17537/2019.14.94.

References

 

  1. Calvin M. Chemical evolution. Molecular evolution, towards the origin of living system on the Earth and elsewhere. Oxford: AT the Clarendon Press; 1969.
  2. Lehninger A.L. Biochemistry. The molecular basis of cell structure and function. New York: Worth Publishers Inc.; 1972.
  3. Rees A.R., Sternberg M.J.E. From cells to atoms: an illustrated introduction to molecular biology. Blackwell Scientific Publications; 1984.
  4. Aryaa S.K., Solankia P.R., Dattab M., Malhotra B.D. Recent advances in self- assembled monolayers based biomolecular electronic devices. J. Biosensors and Bioelectronics. 2009;24(9):2810–2817. doi: 10.1016/j.bios.2009.02.008
  5. Mendes A.C., Baran E.T., Reis R.L., Azevedo H.S. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013;5(6):582–612. doi: 10.1002/wnan.1238
  6. Orsi M. Molecular simulation of self-assembly. In: Self-assembling Biomaterials. 1st Edition. Molecular Design, Characterization and Application in Biology and Medicine. Eds. Azevedo H.S., da Silva R.M.P. Elsevier Ltd. Woodhead Publishing; 2018. P. 305–318 (Series in Biomaterials). doi: 10.1016/B978-0-08-102015-9.00016-2
  7. Lee O.S., Stupp S.I., Schatz G.C. Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers. J. Am. Chem. Soc. 2011;133(10):3677–83. doi: 10.1021/ja110966y
  8. Frith W.J. Self-assembly of small peptide amphiphiles, the structures formed and their applications. (A foods and home and personal care perspective). Philos. Trans. A. 2016;374(2072):2015–0138. doi: 10.1098/rsta.2015.0138
  9. Van der Lit J., Marsman J.L., Koster R.S., Jacobse P.H., den Hartog S.A., Vanmaekelbergh D., Klein Gebbink R.J.M., Filion L., Ingmar Swart I.) Modeling the Self-Assembly of Organic Molecules in 2D Molecular Layers with Different Structures. J. Phys. Chem. C. 2016;120(1). doi: 10.1021/acs.jpcc.5b09889
  10. Brandon C.J., Martin B.P., McGee K.J., Stewart J.J.P., Braun-Sand S.B. An approach to creating a more realistic working model from a protein data bank entry. J. Mol. Mod. 2015;21:1–11. doi: 10.1007/s00894-014-2520-1
  11. Ghadiri M.R., Granja J.R., Milligan R.A., McRee D.E., Hazanovich N. Self assembling organic nanotubes based on a cyclic peptide architecture. Nature. 1993;366:324–327. doi: 10.1038/366324a0
  12. Görbitz C.H. Nanotube formation by hydrophobic dipeptides. Chem. Eur. J. 2001;7:5153–5159. doi: 10.1002/1521-3765(20011203)7:23<5153::AID-CHEM5153>3.0.CO;2-N
  13. Sedman V.L., Adler-Abramovich L., Allen S., Gazit E., Tendler S.J.B. Direct observation of the release of phenylalanine from diphenilalanine nanotubes. J. Am. Chem. Soc. 2006;128:6903–6908. doi: 10.1021/ja060358g
  14. Scanlon S., Aggeli A. Self-assembling peptide nanotubes. Nano Today. 2008;3:22–30. doi: 10.1016/S1748-0132(08)70041-0
  15. Shklovsky J., Beker P., Amdursky N., Gazit E., Rosenman G. Bioinspired peptide nanotubes: deposition technology and physical properties. Mater. Sci. Eng. B. 2010;169:62–66. doi: 10.1016/j.mseb.2009.12.040
  16. Bystrov V.S., Bdikin I., Heredia A., Pullar R.C., Mishina E., Sigov A., Kholkin A.L. Piezoelectricity and Ferroelectricity in biomaterials from proteins to self-assembled peptide nanotubes. In: Piezoelectric nanomaterials for biomedical applications. Eds. Ciofani G., Menciassi A. Berlin: Springer; 2012. P.187–211. doi: 10.1007/978-3-642-28044-3_7
  17. Bystrov V.S., Seyedhosseini E., Kopyl S., Bdikin I.K., Kholkin A.L. Piezoelectricity and ferroelectricity in biomaterials: molecular modeling and piezoresponse force microscopy measurements. J. Appl. Phys. 2014;116(6):066803. doi: 10.1063/1.4891443
  18. Bystrov V.S. Computer simulation nanostructures: bioferroelectric peptide nanotubes. Saarbrucken: LAP Lambert Academic Press; 2016. ISBN 978-3-659-92397-5.
  19. Bystrov V.S., Paramonova E.V., Bdikin I.K., Kopyl S., Heredia A., Pullar R.C., Kholkin A.L. Bioferroelectricity: diphenylalanine peptide nanotubes computational modeling and ferroelectric properties at the nanoscale. Ferroelectrics. 2012;440(1):3–24. doi: 10.1080/00150193.2012.741923
  20. Nuraeva A., Vasilev S., Vasileva D., Zelenovskiy P., Chezganov D., Esin A., Kopyl S., Romanyuk K., Shur V.Ya., Kholkin A.L. Evaporation-Driven Crystallization of Diphenylalanine Microtubes for Microelectronic Applications. Cryst. Growth Des. 2016;16:1472–1479. doi: 10.1021/acs.cgd.5b01604
  21. Weyl H. Symmetry. New Jersey, Princeton: Princeton University Press; 1952. doi: 10.1515/9781400874347
  22. Kane G. Supersymmetry and Beyond: From the Higgs Boson to the New Physics. Basic Books; 2013. 216 p.
  23. Feynman R. The Character of Physical Law. 1965. 173 p.
  24. Chirality and Biological Activity. Eds. Holmstedt B., Frank H., Testa B. New York: Liss; 1990.
  25. IUPAC. Compendium of Chemical Terminology. Compiled by McNaught A.D., Wilkinson A. Oxford: Blackwell Scientific Publications; 1997.
  26. Capito R.M., Azevedo H.S., Velichko Y.S., Mata A., Stupp S.I. Self-assembly of large and small molecules into hierarchically ordered sacs and membranes. Science. 2008;319(5871):1812–1816. doi: 10.1126/science.1154586
  27. Yashima E., Ousaka N., Taura D., Shimomura K., Ikai T., Maeda K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem. Rev. 2016;116(22):13752–13990. doi: 10.1021/acs.chemrev.6b00354
  28. Tverdislov V.A. Chirality as a primary switch of hierarchical levels in molecular biological systems. Biophysics. 2013;58(1):128–132. doi: 10.1134/S0006350913010156
  29. Malyshko E.V., Tverdislov V.A. IOP. J. Phys. Conf. Series. 2016;741:012065. doi: 10.1088/1742-6596/741/1/012065
  30. Tverdislov V.A., Malyshko E.V., Il’chenko S.A., Zhulyabina O.A., Yakovenko L.V. A periodic system of chiral structures in molecular biology. Biophysics. 2017;62(3):331–341. doi: 10.1134/S0006350917030228
  31. Cantor Ch.R., Schimel P.R. Biophysical Chemistry. Part 3. The Behavior of Biological Molecules. San Francisco: W.H. Freeman and Company; 1980.
  32. Eliel E.L., Wilen S., Doyle M. Basic Organic Stereochemistry. New York: Wiley-Interscience; 2001.
  33. Müller U. Symmetry Relationships between Crystal Structures. Applications of Crystallographic Group Theory in Crystal Chemistry. Oxford: University Press; 2013. doi: 10.1093/acprof:oso/9780199669950.001.0001
  34. Lam H., Oh D.C., Cava F., Takacs C.N., Clardy J., de Pedro M.A., Waldor M.K. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science. 2009;325(5947):1552–1555. doi: 10.1126/science.1178123
  35. Tishkov V. I. The Coenzyme Regeneration for Biosynthesis of Chiral Compounds Using Dehydrogenases. Moscow University Chemistry Bulletin. 2002;43(6):381–388 (in Russ.).
  36. Mason S.F. Origins of biomolecular handedness. Nature. 1984;311:19–23. doi: 10.1038/311019a0
  37. Blanke S.R. Expanding Functionality within the Looking-Glass Universe. Science. 2009;325:1505–1506. doi: 10.1126/science.1180332
  38. Verbiest T, Van Elshocht S., Kauranen M., Hellemans L., Snauwaert J., Nuckolls C., Katz T.J., Persoons A. Strong Enhancement of Nonlinear Optical Properties Through Supramolecular Chirality. Science. 1998;282:913–915. doi: 10.1126/science.282.5390.913
  39. Naaman R., Waldeck D.H. Chiral-Induced Spin Selectivity Effect. J. Phys. Chem. Lett. 2012;3(16):2178−2187. doi: 10.1021/jz300793y
  40. Naaman R., Waldeck D.H. Spintronics and Chirality: Spin Selectivity in Electron Transport Through Chiral Molecules. Annu. Rev. Phys. Chem. 2015;66:263–81. doi: 10.1146/annurev-physchem-040214-121554
  41. Dreiling J.M., Gay T.J. Chirally Sensitive Electron-Induced Molecular Breakup and the Vester-Ulbricht Hypothesis. Phys. Rev. Lett. 2014;113:118103. doi: 10.1103/PhysRevLett.113.118103
  42. Ulbricht T.L.V., Vester F. Attempts to induce optical activity with polarized b-radiation. Tetrahedron. 1962;18(5):629–637. doi: 10.1016/S0040-4020(01)92714-0
  43. Sokolov A.A., Ternov I.M. On Polarization and Spin Effects in Theory of Synchrotron Radiation. Sov. Phys. Dokl. 1964;8:1203.
  44. Ternov I.M., Bagrov V.G., Rzaev R.A. Izvestiia VUZov. Fizika (Russian Physics Journal). 1963;5:127–13 (in Russ.).
  45. Kettner M., Göhler B., Zacharias H., Mishra D., Kiran V., Naaman R., Fontanesi C., Waldeck D.H., Sęk S., Pawłowski J., Juhaniewicz J. Spin Filtering in Electron Transport Through Chiral Oligopeptides. J. Phys. Chem. C. 2015;119. doi: 10.1021/jp509974z
  46. Gohler B., Hamelbeck V., Markus T.Z., Kettner M., Hanne G.F., Vager Z., Naaman R., Zacharias H. Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA. Science. 2011;331:894–897. doi: 10.1126/science.1199339
  47. Banerjee-Ghosh K., Dor O.B., Tassinari F., Capua E., Yochelis S., Capua A., Yang S.-H., Parkin S.S.P., Sarkar S., Kronik L., Baczewski L.T., Naaman R., Paltiel Y. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science. 2018;360(6395):1331–1334. doi: 10.1126/science.aar4265
  48. Zhuliabina O.A., Malyshko E.V., Il'chenko S.A., Tverdislov V.A. Vestnik nauki i obrazovaniia (Bulletin of science and education). 2015;4(6):24–25 (in Russ.).
  49. Malyshko E.V., Tverdislov V.A. Physical Principles of Discrete Hierarchies Formation in Protein Macromolecules. IOP Conf. Series: Journal of Physics: Conf. Serie. 2017;917:42025. doi: 10.1088/1742-6596/917/4/042025
  50. Malyshko E.V. Khiral'nyi dualizm kak fizicheskaia osnova stratifikatsii v strukturnykh ierarkhiiakh belkov (Chiral dualism as the physical basis of stratification in protein structural hierarchies): Ph. D. Thesis. Moscow; 2018. 146 p. (in Russ.).
  51. Kharzeev D.E. The Chiral Magnetic Effect and Anomaly-Induced Transport. Prog. Part. Nucl. Phys. 2014;75:133–151. doi: 10.1016/j.ppnp.2014.01.002
  52. Hirono Yu., Kharzeev D.E., Sadofyev A.V. Dynamics of vortices in chiral media: the chiral propulsion effect. Phys. Rev. Lett. 2018;121(14):142301. doi: 10.1103/PhysRevLett.121.142301
  53. Kaushik S., Kharzeev D.E. Quantum Oscillations in the Chiral Magnetic Conductivity. Phys. Rev. B. 2017;95(23):235136. doi: 10.1103/PhysRevB.95.235136
  54. Cortijo A., Kharzeev D., Landsteiner K., Vozmediano M.A.H. Strain induced Chiral Magnetic Effect in Weyl semimetals. Phys. Rev. B. 2016;94(24):24140. doi: 10.1103/PhysRevB.94.241405
  55. Yin P., Zhang Z.M., Lv H., Li T., Haso F., Hu L., Zhang B., Bacsa J., Wei Y., Gao Y., Hou Y., Li Y.G., Hill C.L., Wang E.B., Liu T. Chiral recognition and selection during the self-assembly process of protein-mimic macroanions. Nature Comm. 2015;6:6475. doi: 10.1038/ncomms7475
  56. Kanduc M., Dobnikar J., Podgornik R. Counterion-mediated electrostatic interactions between helical molecules. Soft Matter. 2009;5:868–877. doi: 10.1039/B811795K
  57. Bystrov V.S., Singh B., Bdikin I.K., Tverdislov V.A., Zhulyabina O.A. Ferroelectric physical properties of various dipeptide nanotubes. In: International Conference on Nanomaterials Science and Mechanical Engineering (University of Aveiro, Portugal, July 16–18, 2018): Book of Abstracts. Eds. Bdikin I., Neto V.F.S. Aveiro: UA Editora, Universidade de Aveiro; 2018. P. 62.
  58. Bdikin I., Singh B., Bystrov V.S. Local piezoelectricity in amino acids microcrystals. In: International Conference on Nanomaterials Science and Mechanical Engineering (University of Aveiro, Portugal, July 16–18, 2018): Book of Abstracts. Eds. Bdikin I., Neto V.F.S. Aveiro: UA Editora, Universidade de Aveiro; 2018. P. 78.
  59. Kopyl S., Bystrov V.S., Nuraeva A., Zelenovskiy P., Vasilev S., Arkhipov S.G., Shur V.Ya., Kholkin A.L. Diphenylalanine Peptide Nanotubes with Different Chirality: Structures, Properties, and Applications. In: International Conference on Nanomaterials Science and Mechanical Engineering (University of Aveiro, Portugal, July 16–18, 2018): Book of Abstracts. Eds. Bdikin I., Neto V.F.S. Aveiro: UA Editora, Universidade de Aveiro; 2018. P. 41.
  60. Bystrov V.S., Bdikin I.K., Tverdislov V.A., Zhulyabina O.A., Zelenovskiy P.S., Kopyl S.A. Physical ferroelectric and chiral properties of various dipeptide nanotubes and nanostructures. In: Proceedings of the International Conference "Mathematical Biology and Bioinformatics". Ed. V.D. Lakhno. Vol. 7. Pushchino: IMPB RAS; 2018. Paper No. e9. doi: 10.17537/icmbb18.4
  61. Reches M.,Gazit E. Controlled patterning of aligned self-assembled peptide nanotubes. Nature Nanotech. 2006;1:195–200. doi: 10.1038/nnano.2006.139
  62. Adler-Abramovich L., Aronov D., Beker P., Yevnin M., Stempler S., Buzhansky L., Rosenman G., Gazit E. Self-assembled arrays of peptide nanotubes byvapour deposition. Nature Nanotechnology. 2009;4:849–854. doi: 10.1038/nnano.2009.298
  63. Adler-Abramovich L., Gazit E. The physical properties of supramolecular peptide assemblies: from building block association to technological application. Chem. Soc. Rev. 2014;43:6881–6893. doi: 10.1039/C4CS00164H
  64. Amdursky N., Molotskii M., Aronov D., Adler-Abramovich L., Gazit E., Rozenman G. Blue luminescence based on quantum confinement at peptide nanotubes. Nano Letters. 2009;9(9):3111–3115. doi: 10.1021/nl9008265
  65. Kol N., Adler-Abramovich L., Barlam D., Shneck R.Z., Gazit E., Rousso I. Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett. 2005;5:1343–1346. doi: 10.1021/nl0505896
  66. Zelenovskiy P., Kornev I., Vasilev S., Kholkin A. On the origin of the great rigidity of self-assembled diphenylalanine nanotubes. Phys. Chem. Chem. Phys. 2016;18(43):29681–29685. doi: 10.1039/C6CP04337B
  67. Zelenovskiy P.S., Davydov A.O., Krylov A.S., Kholkin A.L. Raman study of structural transformations in self-assembled diphenylalanine nanotubes at elevated temperatures. J. Raman Spectrosc. 2017;48(11):1401–1405. doi: 10.1002/jrs.5084
  68. Zelenovskiy P.S., Nuraeva A.S., Kopyl S., Arkhipov S.G., Vasilev S.G., Bystrov V.S., Svitlyk V., Shur V.Ya., Mafra L., Kholkin A.L. Chirality-dependent growth of self-assembled diphenylalanine microtubes. Phys. Chem. Chem. Phys. 2019.
  69. The Cambridge Crystallographic Data Centre (CCDC). https://www.ccdc.cam.ac.uk/ (accessed 23.01.2019).
  70. Bystrov V.S., Kopyl S.A., Zelenovskiy P., Zhulyabina O.A., Tverdislov V.A., Salehli F., Ghermani N.E., Shur V.Ya., Kholkin A.L. Investigation of physical properties of diphenylalanine peptide nanotubes having different chiralities and embedded water molecules. Ferroelectrics. 2018;525:168–177.
  71. HyperChem Professional 8.0. http://www.hyper.com/?tabid=360 (accessed 20.02.2019).
  72. Stewart J.J.P. Optimization of Parameters for Semiempirical Methods. I. Method. J. Comput. Chem. 1989;10:209. doi: 10.1002/jcc.540100208
  73. Stewart J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Mod. 2007;13(12):1173–1213. doi: 10.1007/s00894-007-0233-4
  74. Szabo A., Ostlund N. Modern Quantum Chemistry. New York: Macmillan; 1985.
  75. Clark T.A. Handbook of Computational Chemistry. New York: John Wiley and Sons; 1985.
  76. Kohn W., Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965;140:A1133. doi: 10.1103/PhysRev.140.A1133
  77. Kresse G., Hafner J. Ab initio. Phys. Rev. B. 1994;49:14251–14269. doi: 10.1103/PhysRevB.49.14251
  78. Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169
  79. Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmentedwave method. Physical Review B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758
  80. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  81. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785
  82. Becke A.D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993;98:1372–1377. doi: 10.1063/1.464304
  83. Pople J.A., Beveridge D.L. Approximate Molecular Orbital Theory. New York: McGraw-Hill; 1970.
  84. Krishnan R., Kinkley J.S., Seeger R., Pople J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980;72:650–654. doi: 10.1063/1.438955
  85. McLean A.D., Chandler G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J. Chem. Phys. 1980;72:5639–5648. doi: 10.1063/1.438980
  86. Møller Ch., Plesset M. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934;46(7):618–622. doi: 10.1103/PhysRev.46.618
  87. Head-Gordon M., Pople J.A., Frisch M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988;153(6):503–506. doi: 10.1016/0009-2614(88)85250-3
  88. Hamprecht F.A., Cohen A.J., Tozer D.J., Handy N.C. Development and Assessment of New Exchange-correlation Functionals. J. Chem. Phys. 1998;109:6264. doi: 10.1063/1.477267
  89. Bystrov V.S., Zelenovskiy P.S., Nuraeva A.S., Kopyl S.A., Zhulyabina O.A., Tverdislov V.A. Molecular modeling and computational study of the chiral-dependent structures and properties of the self-assembling diphenylalanine peptide nanotubes. J. Mol. Mod. 2019.
  90. Bystrov V.S., Paramonova E.V., Dekhtyar Yu., Pullar R.C., Katashev A., Polyaka N., Bystrova A.V., Sapronova A.V., Fridkin V.M., Kliem H., Kholkin A.L. Polarization of poly(vinylidene fluoride) and poly(vinylidene fluoridetrifluoroethylene) thin films revealed by emission spectroscopy with computational simulation during phase transition. J. Appl. Phys. 2012;111:104113. doi: 10.1063/1.4721373
  91. Bystrov V.S., Paramonova E.V., Bdikin I.K., Bystrova A.V., Pullar R.C., Kholkin A.L. Molecular modeling of the piezoelectric effectin the ferroelectric polymer poly(vinylidene fluoride) (PVDF). J. Mol. Model. 2013;19:3591–3602. doi: 10.1007/s00894-013-1891-z
  92. Bystrov V.S., Bdikin I.K., Silibin M., Karpinsky D., Kopyl S., Paramonova E.V., Goncalves G. Molecular modeling of the piezoelectric properties of ferroelectric composites containing polyvinylidene fluoride (PVDF) and either graphene or graphene oxide. J. Mol. Mod. 2017;23(4):128. doi: 10.1007/s00894-017-3291-2
  93. Murrell J.N., Harget A.J. Semi-empirical Self-consistent-field Molecular Orbital Theory of Molecules. New York: Wiley Interscience; 1971.
  94. Brandon C.J., Martin B.P., McGee K.J., Stewart J.J.P., Braun-Sand S.B. An approach to creating a more realistic working model from a protein data bank entry. J. Mol. Mod. 2015;21(1):11. doi: 10.1007/s00894-014-2520-1
  95. Dewar M.J.S., Thiel W. The MNDO method. Approximations and parameters. J. Amer. Chem. Soc. 1977;99:4899–4906. doi: 10.1021/ja00457a004
  96. Stewart J.J.P. An investigation into the applicability of the semiempirical method PM7 for modeling the catalytic mechanism in the enzyme Chymotrypsin. J. Mol. Mod. 2017;23:154. doi: 10.1007/s00894-017-3326-8
  97. Dewar M.J.S., Zoebisch E.G., Healy E.F., Stewart J.J.P. A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985;107:3902–3909. doi: 10.1021/ja00299a024
  98. Andrade-Filho T., Martins T.C., Ferreira F.F., Alves W.A., Rocha A.R. Water-driven stabilization of diphenylalanine nanotube structures. Theor. Chem. Acc. 2016;135(8):185. doi: 10.1007/s00214-016-1936-3
  99. Klein E., Matis M., Lukes V., Cibulkova Z. The applicability of AM1 and PM3 semi-empirical methods for the study of NeH bond dissociation enthalpies and ionisation potentials of amine type antioxidants. Polymer Degradation and Stability. 2006;91:262–270. doi: 10.1016/j.polymdegradstab.2005.05.010
  100. Allinger N.L. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 1977;99(25):8127–8134. doi: 10.1021/ja00467a001
  101. Weiner S.J., Kollman P.A., Case D.A., Singh U.C., Ghio C., Alagona G., Profeta Jr.S., Weiner P. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 1984;106:765–784. doi: 10.1021/ja00315a051
  102. Weiner S.J., Kollman P.A., Nguyen D.T., Case D.A. An all atom force field for simulations of proteins and nucleic acids. J. Comput. Chem. 1986;7:230–252. doi: 10.1002/jcc.540070216
  103. Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M.Jr., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A. A second generation force field for the simulation of proteins and nucleic acids. J. Am. Chem. Soc. 1995;117:5179–5197. doi: 10.1021/ja00124a002
  104. Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S., Karplus M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 1983;4:187–217. doi: 10.1002/jcc.540040211
  105. Flack H.D., Bernardinelli G. The use of X-ray crystallography to determine absolute configuration. Chirality. 2008;20:681–690. doi: 10.1002/chir.20473
  106. Flack H.D. The use of X-ray Crystallography to Determine Absolute Configuration (II). Acta Chim. Slov. 2008;55(4):689–691.
  107. International Tables for Crystallography. Volume A: Space-Group Symmetry. Ed. Hahn Th. Netherlands: Spriger; 2005.
  108. Open Babel. https://openbabel.org/docs/dev/Installation/install.html (accessed 20.02.2019).
  109. Lennard-Jones J.E. On the Determination of Molecular Fields. Proc. R. Soc. Lond. A. 1924;106(738):463–477.
  110. Shaitan R.V., Lozhnikov M.A., Kobelkov G.M. Relaxation Folding and the Principle of the Minimum Rate of Energy Dissipation for Conformational Motions in a Viscous Medium. Biophysics. 2016;61(4):531–538. doi: 10.1134/S0006350916040205
  111. Grosberg A.Y. Khokhlov A.R. Giant Molecules: Here, There, and Everywhere. Academic Press; 1997. ISBN 0-12-304130-9.
  112. Sidorova A.E., Malyshko E.V., Kotov A.R., Levashova N.T., Ustinin M.N., Tverdislov V.A. Protein Folding as an Autowave Process of Self-Organization in Active Media. Bulletin of the Russian Academy of Sciences: Physic. 2019;83(1):85–90.
  113. Hadzibabic Z., Kruger P., Cheneau M., Battelier B., Dalibard J. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature. 2006;441:1118–1121. doi: 10.1038/nature04851
  114. Sidorova A.E., Tverdislov V.A., Levashova N.T., Kotov A.R., Ustinin M.N. Quantitative approach to the assessment of chirality in hierarchies of protein structures. In: Proceedings of the International Conference "Mathematical Biology and Bioinformatics". Ed. V.D. Lakhno. Vol. 7. Pushchino: IMPB RAS; 2018. Paper No. e82. doi: 10.17537/icmbb18.96
  115. Tverdislov V.A., Malyshko E.V. Chiral dualism, arrow of symmetry and molecular machines. In: Proceedings of the International Conference "Mathematical Biology and Bioinformatics". Ed. V.D. Lakhno. Vol. 7. Pushchino: IMPB RAS; 2018. Paper No 81. doi: 10.17537/icmbb18.97
  116. Novotny M., Kleywegt G.J. A survey of left-handed helices in protein structures. J. Mol. Biol. 2005;347(2):231–410. doi: 10.1016/j.jmb.2005.01.037.
Table of Contents Original Article
Math. Biol. Bioinf.
2019;14(1):94-125
doi: 10.17537/2019.14.94
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)
References

 

  Copyright IMPB RAS © 2005-2024