Onishchenko P.S.1,2, Klyshnikov K.Y.2, Ovcharenko E.A.2
Artificial Neural Networks in Cardiology: Analysis of Numerical and Text Data
Mathematical Biology & Bioinformatics. 2020;15(1):40-56.
doi: 10.17537/2020.15.40.
References
- Dhingra R., Vasan R.S. Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers. Trends in Cardiovascular Medicine. 2017;27(2):123–133. doi: 10.1016/j.tcm.2016.07.005
- Kopeva K.V., Grakova E.V., Teplyakov A.T. New biomarkers of heart failure: diagnostic and prognostic value of NT-proBNP and interleukin receptor family member ST2. Complex Issues of Cardiovascular Diseases. 2018;7(1):94–101 (in Russ.). doi: 10.17802/2306-1278-2018-7-1-94-101
- Wang J., Tan G.J., Han L.N., Bai Y.Y., He M., Liu H.B. Novel biomarkers for cardiovascular risk prediction. Journal of Geriatric Cardiology. 2017;14(2):135–150.
- Pyakurel P., Karki P., Lamsal M., Ghimire A., Pokharel P.K. Cardiovascular risk factors among industrial workers: a cross–sectional study from eastern Nepal. J. Occup. Med. Toxicol. 2016;11:25. doi: 10.1186/s12995-016-0109-6
- Kinoshita M., Yokote K., Arai H., Iida M., Ishigaki Y., Ishibashi S., Umemoto S., Egusa G., Ohmura H., Okamura T., Kihara S., Koba S., Saito I., Shoji T., Daida H., Tsukamoto K., Deguchi J., Dohi S., Dobashi K., Hamaguchi H., Hara M., Hiro T., Biro S., Fujioka Y., Maruyama C., Miyamoto Y., Murakami Y., Yokode M., Yoshida H., Rakugi H., Wakatsuki A., Yamashita S. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2017. J. Atheroscler. Thromb. 2018;25(9):846–84. doi: 10.5551/jat.GL2017
- Tabakaev M.V., Artamonova G.V. Urbanization and cardiovascular diseases in modern society. Russ. J. Cardiol. 2015;6(122):94–99.
- Studziński K., Tomasik T., Krzysztoń J., Jóźwiak J., Windak A. Effect of using cardiovascular risk scoring in routine risk assessment in primary prevention of cardiovascular disease: protocol for an overview of systematic reviews. BMJ Open. 2017;7(3). doi: 10.1136/bmjopen-2016-014206
- Garg N., Muduli S.K., Kapoor A., Tewari S., Kumar S., Khanna R., Goel P.K. Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses. Indian Heart Journal. 2017;69(4):458–463. doi: 10.1016/j.ihj.2017.01.015
- Jiang F., Jiang Y., Zhi H., Dong Y., Li H., Ma S., Wang Y., Dong Q., Shen H., Wang Y. Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol. 2017;2(4):230–243. doi: 10.1136/svn-2017-000101
- Sacchi L., Lanzola G., Viani N., Quaglini S. Personalization and Patient Involvement in Decision Support Systems: Current Trends. Yearb. Med. Inform. 2015;10(1):106–118. doi: 10.15265/IY-2015-015
- Miller R.A. Medical diagnostic decision support systems – past, present, and future: a threaded bibliography and brief commentary. J. Am. Med. Inform. Assoc. 1994(1):8–27. doi: 10.1136/jamia.1994.95236141
- Tiwari P., Shah N., Samuel E., Shah P., Patel Y., Tiwari P. Clinical decision support systems. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. 2019;5(2):993–995. doi: 10.32628/CSEIT1952264
- Ramesh ΐ.N., Kambhampati C., Monson J.R.T., Drew P.J. Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 2004;86(5):334–338. doi: 10.1308/147870804290
- Medvedev V.S., Potemkin V.G. Neironnye seti. MATLAB 6 (Neural Networks. MATLAB 6). Moscow; 2002. 496 p. (in Russ.).
- Herkenhoff L., Fogli J. Applied statistics for business and management using Microsoft Excel. New York: Springer, 2013. doi: 10.1007/978-1-4614-8423-3
- Weiß C.H. StatSoft Inc., Tulsa O.K.: STATISTICA, Version 8. Advances in Statistical Analysis. 2007;91(3):339–341. doi: 10.1007/s10182-007-0038-x
- Grapov D., Fahrmann J., Wanichthanarak K., Khoomrung S. Rise of deep learning for genomic, proteomic, and metabolomic data integration in precision medicine. OMICS: A Journal of Integrative Biology. 2018;22(10):630–636. doi: 10.1089/omi.2018.0097
- Han S.H., Kim K.W., Kim S., Youn Y.C. Artificial neural network: understanding the basic concepts without mathematics. Dement Neurocognitive Disord. 2018;17(3):83–89. doi: 10.12779/dnd.2018.17.3.83
- Zharikov O.G., Kovalev V.A., Litvin A.A. Information technologies for the Physician. 2008;5:24–30 (in Russ.).
- Goodfellow I., Bengio Y., Courville A. Deep Learning. Cambridge: MIT Press, 2016. 800 p.
- Panchal G., Ganatra A., Shah P., Panchal D. Determination of over-learning and over-fitting problem in back propagation neural network. International Journal on Soft Computing. 2011;2(2):40–51. doi: 10.5121/ijsc.2011.2204
- Rozykhodzhaeva G.A., Rozykhodzhaeva D.A. Features of formation of training set and training of the neural network with incomplete queries by solving private medical tasks. Scientific Review. Biological science. 2017;5:28–32 (in Russ.).
- Choi E., Schuetz A., Stewart W.F., Sun J. Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. 2017;24(2):361–370. doi: 10.1093/jamia/ocw112
- Kim J.K., Kang S. Neural Network-Based Coronary Heart Disease Risk Prediction Using Feature Correlation Analysis. J. Healthc. Eng. 2017. doi: 10.1155/2017/2780501
- Kalyakulina A.I., Yusipov I.I., Moskalenko V.A., Nikolskiy A.V., Kozlov A.A., Zolotykh N.Yu., Ivanchenko M.V. Finding morphology points of electrocardiographic-signal waves using wavelet analysis. Radiophysics and Quantum Electronics. 2019;61(8–9):689–703. doi: 10.1007/s11141-019-09929-2
- Sannino G., De Pietro G. A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Future Generation Computer Systems. 2018;86:446–455. doi: 10.1016/j.future.2018.03.057
- Goldberger A.L., Amaral L.A., Glass L., Hausdorff J.M., Ivanov P.C., Mark R.G., Mietus J.E., Moody G.B., Peng C.-K., Stanley H.E. Physiobank, physiotoolkit, and physionet. Circulation. 2000;101(23). doi: 10.1161/01.CIR.101.23.e215
- Moody G.B., Mark R.G. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine. 2001;20(3):45–50. doi: 10.1109/51.932724
- Yıldırım Ö., Pławiak P., Tan R.-S., Acharya U.R. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Computers in biology and medicine. 2018;102:411–420. doi: 10.1016/j.compbiomed.2018.09.009
- Moskalenko V., Zolotykh N., Osipov G. Deep Learning for ECG Segmentation. In: International Conference on Neuroinformatics. Eds. Kryzhanovsky Β., Dunin-Barkowski W., Redko V., Tiumentsev Yu. Cham: Springer, 2019. P. 246–254.
- Moskalenko V.A., Nikolskiy A.V., Zolotykh N.Yu., Kozlov A.A., Kosonogov K.A., Kalyakulina A.I., Yusipov I.I., Levanov V.M. Cyberheart-Diagnostics Software Package for Automated Electrocardiogram Analysis Based on Machine Learning Techniques. Modern Technologies in Medicine. 2019;11(2):86–91. doi: 10.17691/stm2019.11.2.12
- Savalia S., Emamian V. Cardiac arrhythmia classification by multi-layer perceptron and convolution neural networks. Bioengineering (Basel). 2018;5(2). doi: 10.3390/bioengineering5020035
- Lu P., Guo S., Zhang H., Li Q., Wang Y., Wang Y., Qi L. Research on improved depth belief network-based prediction of cardiovascular diseases. J. Healthc Eng. 2018. doi: 10.1155/2018/8954878
- Iftikhar S., Fatima K., Rehman A., Almazyad A.S., Saba T. An evolution based hybrid approach for heart disease classification and associated risk factor identification. Biomedical Research. 2017;28,(8):3451–3455.
- Chaurasia V., Pal S. Data Mining Approach to Detect Heart Diseases. International Journal of Advanced Computer Science and Information Technology. 2013;2(4):56–66.
- Tison G.H., Sanchez J.M., Ballinger B., Singh A., Olgin J.E., Pletcher M.J., Vittinghoff E., Lee E.S., Fan S.M., Gladstone R.A., Mikell C., Sohoni N., Hsieh J., Marcus G.M. Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiology. 2018;3(5):409–416. doi: 10.1001/jamacardio.2018.0136
- Tsai P.-F., Chen P.-C., Chen Y.-Y., Song H.-Y., Lin H.-M., Lin F.-M., Huang Q.-P. Length of hospital stay prediction at the admission stage for cardiology patients using artificial neural network. J. Healthc. Eng. 2016. doi: 10.1155/2016/7035463
- Kutafina E., Bechtold I., Kabino K., Jonas S.M. Recursive neural networks in hospital bed occupancy forecasting. BMC Medical Informatics and Decision Making. 2019;19(39). doi: 10.1186/s12911-019-0776-1
- Kwon J.M., Lee Y., Lee Y., Lee S., Park J. An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest. J. Am. Heart Assoc. 2018;7(13). doi: 10.1161/JAHA.118.008678
- Meyer A., Zverinski D., Pfahringer B, Kempfert J., Kuehne T, Sündermann S.H., Stamm C., Hofmann T., Falk V., Eickhoff C. Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir. Med. 2018;6(12):905–914. doi: 10.1016/S2213-2600(18)30300-X
- Nanayakkara S., Fogarty S., Tremeer M., Ross K., Richards B., Bergmeir C., Xu S., Stub D., Smith K., Tacey M., Liew D., Pilcher D., Kaye D.M. Characterising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective international registry study. PLoS Med. 2018;15(11). doi: 10.1371/journal.pmed.1002709
- Yasnitsky L.N., Cherepanov F.M. Neuro-expert system of diagnostics, forecasting and risk management cardiovascular diseases. Applied Mathematics and Control Sciences. 2018(3):107–126 (in Russ.).
- Narain R., Saxena S., Goyal A.K. Cardiovascular risk prediction: a comparative study of Framingham and quantum neural network based approach. Patient Prefer Adherence. 2016(10):1259–1270. doi: 10.2147/PPA.S108203
- Kordzadeh A., Esfahlani S.S. The Role of Artificial Intelligence in the Prediction of Functional Maturation of Arteriovenous Fistula. Ann. Vasc. Dis. 2019;12(1):44–49. doi: 10.3400/avd.oa.18-00129
- Li H., Luo M., Zheng J., Luo J., Zeng R., Feng N., Du Q., Fang J. An artificial neural network prediction model of congenital heart disease based on risk factors. Medicine (Baltimore). 2017;96(6). doi: 10.1097/MD.0000000000006090
- Weng S.F., Reps J., Kai J., Garibaldi J.M., Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE. 2017;12(4). doi: 10.1371/journal.pone.0174944
- Stout K.K., Daniels C.J., Aboulhosn J.A., Bozkurt B., Broberg C.S., Colman J.M., Crumb S.R., Dearani J.A., Fuller S., Gurvitz M., Khairy P., Landzberg M.J., Saidi A., Valente A.M., Van Hare G.F. 2018 AHA/ACC guideline for the management of adults with congenital heart disease. Journal of the American College of Cardiology. 2018. doi: 10.1016/j.jacc.2018.08.1029
- Sbrollini A., De Jongh M.C., Ter Haar C.C., Treskes R.W., Man S., Burattini L., Swenne C.A. Serial electrocardiography to detect newly emerging or aggravating cardiac pathology: a deep-learning approach. Biomed. Eng. Online. 2019;18(15). doi: 10.1186/s12938-019-0630-9
- Sadek S., Al-Hamadi A., Michaelis B., Sayed U. Face detection and localization in color images: an efficient neural approach. Journal of Software Engineering and Applications. 2011;04(12):682–687. doi: 10.4236/jsea.2011.412080
- Xiao T., Li S., Wang B., Lin L., Wang X. End-to-end deep learning for person search. arXiv: 1604.01850 [cs.CV]. 2016.
- Bin Sulaiman R. Artificial Intelligence Based Autonomous Car. SSRN Electronic Journal. 2018. doi: 10.2139/ssrn.3167638
- Shaw P., Williams I. Reuse in practice: the UK’s car and clothing sectors. Detritus: Multidisciplinary journal of waste resources & residues. 2018;04:36–47. doi: 10.31025/2611-4135/2018.13735
- IBM Watson. https://www.ibm.com/watson/ (accessed 28 January 2020).
- Curioni-Fontecedro A. A new era of oncology through artificial intelligence. ESMO Open. 2017;2(2). doi: 10.1136/esmoopen-2017-000198
- Chen Y., Elenee Argentinis J.D., Weber G. IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research. Clin. Ther. 2016;38(4):688–701. doi: 10.1016/j.clinthera.2015.12.001
- Hannun A.Y., Rajpurkar P., Haghpanahi M., Tison G.H., Bourn C., Turakhia M.P., Ng A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine. 2019;25(1):65–69. doi: 10.1038/s41591-018-0268-3
- Kańtoch E. Recognition of sedentary behavior by machine learning analysis of wearable sensors during activities of daily living for telemedical assessment of cardiovascular risk. Sensors. 2018;18(10). doi: 10.3390/s18103219
- Mena L.J., Félix, V.G., Ochoa A., Ostos R., González E., Aspuru J., Velarde P., Maestre G.E. Mobile personal health monitoring for automated classification of electrocardiogram signals in elderly. Computational and Mathematical Methods in Medicine. 2018;2018:1–9. doi: 10.1155/2018/9128054
- Beritelli F., Capizzi G., Lo Sciuto G., Napoli C., Scaglione F. Automatic heart activity diagnosis based on Gram polynomials and probabilistic neural networks. Biomed. Eng. Lett. 2017;8(1):77–85. doi: 10.1007/s13534-017-0046-z
- Palomäki A., Hällberg V., Ala-Korpela M., Kovanen P.T., Malminiemi K. Prompt impact of first prospective statin mega-trials on postoperative lipid management of CABG patients: a 20-year follow-up in a single hospital. Lipids Health Dis. 2016;15:124. doi: 10.1186/s12944-016-0292-6
- Niemi J., Mäkinen V.-P., Heikkonen J., Tenkanen L., Hiltunen Y., Hannuksela M. L., Jauhiainen M., Forsblom C., Taskinen M.R., Kesäniemi Y.A., Savolainen M.J., Kaski K., Groop P.H., Kovanen P.T., Ala-Korpela M. Estimation of VLDL, IDL, LDL, HDL2, apoA-I, and apoB from the Friedewald inputs––apoB and IDL, but not LDL, are associated with mortality in type 1 diabetes. Annals of Medicine. 2009;41(6):451–461. doi: 10.1080/07853890902893392
- Yao J., Tridandapani S., Auffermann W.F., Wick C.A., Bhatti P.T. An adaptive seismocardiography (scg)-ecg multimodal framework for cardiac gating using artificial neural networks. IEEE J. Transl. Eng. Health Med. 2018;6. doi: 10.1109/JTEHM.2018.2869141
- Sakr S., Elshawi R., Ahmed A., Qureshi W.T., Brawner C., Keteyian S., Blaha M.J., Al-Mallah M.H. Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project. PLoS One. 2018;13(4). doi: 10.1371/journal.pone.0195344
- Myers P.D., Scirica B.M., Stultz C.M. Machine learning improves risk stratification after acute coronary syndrome. Sci. Rep. 2017;7. doi: 10.1038/s41598-017-12951-x
|
|
|