Russian version English version
Volume 15   Issue 1   Year 2020
Ustinin M.N., Rykunov S.D., Boyko A.I., Maslova O.A.

Reconstruction of the Human Brain Functional Structure Based on the Electroencephalography Data

Mathematical Biology & Bioinformatics. 2020;15(1):106-117.

doi: 10.17537/2020.15.106.

References

  1. Jasper H.H. Report of the committee on methods of clinical examination in electroencephalography. Electroencephalography and Clinical Neurophysiology. 1958;10(2):370–375. doi: 10.1016/0013-4694(58)90053-1
  2. Goldman D. The clinical use of the “average” reference electrode in monopolar recording. Electroencephalogr Clin Neurophysiol. 1950;2:209–212. doi: 10.1016/0013-4694(50)90039-3
  3. Michel C.M., and Brunet D. EEG Source Imaging: A Practical Review of the Analysis Steps. Front. Neurol. 2019;10:325.  doi: 10.3389/fneur.2019.00325
  4. Krauss P., Schilling A., Bauer J., Tziridis K., Metzner C., Schulze H., Traxdorf M. Analysis of Multichannel EEG Patterns During Human Sleep: A Novel Approach. Front. Hum. Neurosci. 2018;12:121.  doi: 10.3389/fnhum.2018.00121
  5. Smith S.J.M. EEG in the diagnosis, classification, and management of patients with epilepsy. Journal of Neurology, Neurosurgery & Psychiatry. 2005;76:ii2–ii7. doi: 10.1136/jnnp.2005.069245
  6. Bin Yoo H., Concha E.O.d.l., De Ridder D., Pickut B.A., Vanneste S. The Functional Alterations in Top-Down Attention Streams of Parkinson’s disease Measured by EEG. Sci. Rep. 2018;8:10609.  doi: 10.1038/s41598-018-29036-y
  7. Smailovic U., Jelic V. Neurophysiological Markers of Alzheimer’s Disease: Quantitative EEG Approach. Neurol Ther. 2019;8:37–55.  doi: 10.1007/s40120-019-00169-0
  8. Bocharov A.V., Knyazev G.G., Savostyanov A.N., Astakhova T.N., Tamozhnikov S.S. EEG dynamics of spontaneous stimulus-independent thoughts. Cogn. Neurosci. 2019;10(2):77–87.  doi: 10.1080/17588928.2018.1534820
  9. Berger H. Über das elektroenkephalogramm des menschen. Arch. Psychiatr. Nervenkrankh. 1929;87:527–570. doi: 10.1007/BF01797193
  10. Halgren M., Ulbert I., Bastuji H., Fabó D., Erőss L., Rey M., Devinsky O., Doyle W.K., Mak-McCully R., Halgren E., Wittner L., Chauvel P., Heit G., Eskandar E., Mandell A., Cash S.S. The generation and propagation of the human alpha rhythm. PNAS. 2019;116(47):23772–23782. doi: 10.1073/pnas.1913092116
  11. Basar E. A review of alpha activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathology. Int. J. Psychophysiol. 2012;86(1):1–24.  doi: 10.1016/j.ijpsycho.2012.07.002
  12. Nunez P.L.,Wingeier B.M., Silberstein R.B. Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum. Brain. Mapp. 2001;13:125–164. doi: 10.1002/hbm.1030
  13. Barzegaran E., Vildavski V.Y., Knyazeva M.G. Fine Structure of Posterior Alpha Rhythm in Human EEG: Frequency Components, Their Cortical Sources, and Temporal Behavior. Sci. Rep. 2017;7:8249. doi: 10.1038/s41598-017-08421-z
  14. Olejarczyk E., Bogucki P., Sobieszek A. The EEG Split Alpha Peak: Phenomenological Origins and Methodological Aspects of Detection and Evaluation. Front. Neurosci. 2017;11:506. doi: 10.3389/fnins.2017.00506
  15. Llinás R.R., Ustinin M.N. Precise Frequency-Pattern Analysis to Decompose Complex Systems into Functionally Invariant Entities: U.S. Patent. US Patent App. Publ. 20160012011 A1. 01/14/2016.
  16. Llinás R.R., Ustinin M.N. Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization. Front. Neural Circuits. 2014;8. Article No. 43. doi: 10.3389/fncir.2014.00043
  17. Llinás R.R., Ustinin M.N., Rykunov S.D., Boyko A.I., Sychev V.V., Walton K.D., Rabello G.M., Garcia J. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data. Front. Neurosci. 2015;9. Article No. 373. doi: 10.3389/fnins.2015.00373
  18. Llinás R.R., Ustinin M., Rykunov S., Walton K.D., Rabello G.M., Garcia J., Boyko A., Sychev V. Noninvasive muscle activity imaging using magnetography. PNAS. 2020;117(9):4942–4947. doi: 10.1073/pnas.1913135117
  19. Llinás R.R., Ustinin M., Rykunov S., Walton K.D., Rabello G.M., Garcia J., Boyko A., Sychev V. Data from “Noninvasive muscle activity imaging using magnetography.” Open Science Framework. 2019. doi: 10.17605/OSF.IO/TYZDV
  20. Project BCI - EEG motor activity data set: Brain Computer Interface research at NUST Pakistan. https://sites.google.com/site/projectbci/ (accessed 12.06.2020).
  21. Holmes C.J., Hoge R., Collins L., Woods R., Toga A.W., Evans A.C. Enhancement of MR images using registration for signal averaging. J. Comput. Assist. Tomogr. 1998;22(2):324–33. doi: 10.1097/00004728-199803000-00032
  22. Tadel F., Baillet S., Mosher J.C., Pantazis D., Leahy R.M. Brainstorm: A User-Friendly Application for MEG/EEG Analysis. Computational Intelligence and Neuroscience. 2011. Article ID 879716. doi: 10.1155/2011/879716
  23. Frigo M., Johnson S.G. The Design and Implementation of FFTW3. Proceedings of the IEEE. 2005;93(2):216–231. doi: 10.1109/JPROC.2004.840301
  24. Belouchrani A., Abed-Meraim K., Cardoso J.-F., Moulines E. A blind source separation technique using second-order statistics. IEEE Trans. Signal Processing. 1997;45:434–444. doi: 10.1109/78.554307
  25. Mosher J.C., Leahy R.M., Lewis P.S. EEG and MEG: forward solutions for inverse methods. IEEE Transactions on Biomedical Engineering. 1999;46(3):245–259. doi: 10.1109/10.748978
  26. Ustinin M.N., Rykunov S.D., Boyko A.I., Maslova O.A., Walton K.D., Llinás R.R. Estimation of the Directions of Alpha Rhythm Elementary Sources Using the Method of Human Brain Functional Tomography Based On the Magnetic Encephalography Data. Mathematical Biology and Bioinformatics. 2018;13(2):426–436. doi: 10.17537/2018.13.426
  27. Verkhlyutov V.M., Shchuchkin Yu.V., Ushakov V.L., Strelets V.B., Pirogov Yu.A. Estimation of Localization and Dipole Moment of Alpha- and Theta-Rhythm Sources by Cluster Analysis in Healthy Subjects and Schizophrenics. Zh. Vyssh. Nerv. Deiat. I.P. Pavlova. 2006;56(1):47–55 (in Russ.).
  28. Montes-Restrepo V.,Van Mierlo P., Strobbe G., Staelens S., Vandenberghe S., Hallez H. Influence of skull modeling approaches on EEG source localization. Brain Topography. 2014;27:95–111. doi: 10.1007/s10548-013-0313-y
  29. Huang Y., Parra L.C., Haufe S. The NewYork Head — a precise standardized volume conductor model for EEG source localization and tES targeting. NeuroImage. 2016;140:150–162. doi: 10.1016/j.neuroimage.2015.12.019
  30. Céspedes-Villar Y., Martinez-Vargas J.D., Castellanos-Dominguez G. Influence of patient-specific head modeling on EEG source imaging. Computational and Mathematical Methods in Medicine. 2020. Article ID 5076865.  doi: 10.1155/2020/5076865
  31. Koessler L., Maillard L., Benhadid A., Vignal J.P., Braun M., Vespignani H. Spatial localization of EEG electrodes. Neurophysiol. Clin. 2007;37(2):97–102. doi: 10.1016/j.neucli.2007.03.002
  32. Chen S., He Y., Qiu H., Yan X., Zhao M. Spatial Localization of EEG Electrodes in a TOF+CCD Camera System. Front. Neuroinform. 2019;13. Article No. 21. doi: 10.3389/fninf.2019.00021
  33. Taberna G.A., Marino M., Ganzetti M., Mantini D. Spatial localization of EEG electrodes using 3D scanning. J. Neural Eng. 2019;16(2):026020. doi: 10.1088/1741-2552/aafdd1
  34. Rykunov S.D., Rykunova E.D., Boyko A.I., Ustinin M.N. VirtEl - Software for Magnetic Encephalography Data Analysis by the Method of Virtual Electrodes. Mathematical Biology and Bioinformatics. 2019;14(1):340–354. doi: 10.17537/2019.14.340
Table of Contents Original Article
Math. Biol. Bioinf.
2020;15(1):106-117
doi: 10.17537/2020.15.106
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2020