Korshunova A.N., Lakhno V.D.
Charge Motion along Polynucleotide Chains in a Constant Electric Field Depends on the Charge Coupling Constant with Chain Displacements
Mathematical Biology & Bioinformatics. 2021;16(2):411-421.
doi: 10.17537/2021.16.411.
References
- Chetverikov A.P., Ebeling W., Lakhno V.D., Velarde M.G. Discrete-breather-assisted charge transport along DNA-like molecular wires. Phys. Rev. E. 2019;100:052203. doi: 10.1103/PhysRevE.100.052203
- Taniguchi M., Kawai T. DNA electronics. Physica E. 2006;33:1-12. doi: 10.1016/j.physe.2006.01.005
- Starikov E.B., Lewis J.P., Sankey O.F. Base sequence effects on charge carrier generation in DNA: a theoretical study. International Journal of Modern Physics B. 2005;19(29):4331-4357. doi: 10.1142/S0217979205032802
- Astakhova T.Yu., Vinogradov G.A. Polarons on Dimerized Lattice of Polyacetilene. Continuum Approximation. Mathematical Biology and Bioinformatics. 2021;16(2):335-348. doi: 10.17537/2021.16.335
- Porath D., Bezryadin A., De Vries S., Dekker C. Direct measurement of electrical transport through DNA molecules. Nature. 2000;403:635-638. doi: 10.1038/35001029
- Kasumov A.Y., Kociak M., Guéron S., Reulet B., Volkov V.T., Klinov D.V., Bouchiat H. Proximity-Induced Superconductivity in DNA. Science. 2001;291(5502):280-282. doi: 10.1126/science.291.5502.280
- Lakhno V.D. DNA nanobioelectronics. Int. Quantum. Chem. 2008;108:1970-1981. doi: 10.1002/qua.21717
- Porath D., Cuniberti G., Di Felice R. Charge transport in DNA-based devices. Top. Curr. Chem. 2004;237:183-227. doi: 10.1007/b94477
- Eudres R.G., Cox D.L., Singh R.R.P. Colloquium: The quest for high-conductance DNA. Rev. Mod. Phys. 2004;76:195-214. doi: 10.1103/RevModPhys.76.195
- Fialko N.S., Lakhno V.D. Dynamics of Large Radius Polaron in a Model Polynucleotide Chain with Random Perturbations. Math. Biol. Bioinf. 2019;14(2):406-419. doi: 10.17537/2019.14.406
- Fuentes M.A., Maniadis P., Kalosakas G., Rasmussen K.O., Bishop A.R., Kenkre V.M., Gaididei Yu.B. Multipeaked polarons in soft potentials. Phys. Rev. E. 2004;70:025601. doi: 10.1103/PhysRevE.70.025601
- Hennig D., Burbanks A.D., Osbaldestin A.H. Directed current in the Holstein system. Phys. Rev. E. 2011;83:031121. doi: 10.1103/PhysRevE.83.031121
- Yakushevich L.V., Balashova V.N., Zakiryanov F.K. On the DNA Kink Motion Under the Action of Constant Torque. Math. Biol. Bioinf. 2016;11(1):81-90. doi: 10.17537/2016.11.81
- Lakhno V.D. Davydov's solitons in a homogeneous nucleotide chain. Int. J. Quant. Chem. 2010;110:127-137. doi: 10.1002/qua.22264
- Korshunova A.N., Lakhno V.D. The Peculiarities of Polaron Motion in the Molecular Polynucleotide Chains of Finite Length In The Presence Of Localized Excitations in the Chain. Math. Biol. Bioinf.. 2017;12(1):204-223 (in Russ.) doi: 10.17537/2017.12.204
- Conwell E.M., Rakhmanova S.V. Polarons in DNA. Proc. Natl. Acad. Sci. 2000;97:4556-4560. doi: 10.1073/pnas.050074497
- Lakhno V.D. Soliton-like Solutions and Electron Transfer in DNA. J. Biol. Phys. 2000;26:133-147. doi: 10.1023/A:1005275211233
- Korshunova A.N., Lakhno V.D. A new type of localized fast moving electronic excitations in molecular chains. Physica E. 2014;60:206-209. doi: 10.1016/j.physe.2014.02.025
- Zhongkai Huang, Masayuki Hoshina, Hajime Ishihara, Yang Zhao. Transient dynamics of super Bloch oscillations of a one dimensional Holstein polaron under the influence of an external AC electric field. Annalen der Physik. 2017;529:1600367. doi: 10.1002/andp.201600367
- De Pablo P.J., Moreno-Herrero F., Colchero J., Gómez Herrero J., Herrero P., Baró A.M., Ordejón P., Soler J.M., Artacho E. Absence of dc-Conductivity in λ-DNA. Phys. Rev. Lett. 2000;85:4992-4995. doi: 10.1103/PhysRevLett.85.4992
- Lakhno V.D., Korshunova A.N. Bloch oscillations of a soliton in a molecular chain. Eur. Phys. J. B. 2007;55:85-87. doi: 10.1140/epjb/e2007-00045-3
- Lakhno V.D., Korshunova A.N. Electron motion in a Holstein molecular chain in an electric field. Euro. Phys. J. B. 2011;79:147-151. doi: 10.1140/epjb/e2010-10565-2
- Voulgarakis N.K. The effect of thermal fluctuations on Holstein polaron dynamics in electric Field. Physica B. 2017;519:15-20. doi: 10.1016/j.physb.2017.04.030
- Korshunova A.N., Lakhno V.D. Charge Transfer by Polarons in a Homogeneous Poly G/Poly C-Chain Subjected to a Constant Electric Field in Terms of the Peyrard–Bishop–Holstein Model. Technical Physics. 2020;65(9):1467-1474. doi: 10.1134/S1063784220090200
- Astakhova T., Vinogradov G. New aspects of polaron dynamics in electric field. Eur. Phys. J. B. 2019;92:247. doi: 10.1140/epjb/e2019-100339-y
- Holstein T. Studies of polaron motion: Part I. The molecular-crystal model. Annals of Phys. 1959;8:325-342. doi: 10.1016/0003-4916(59)90002-8
- Holstein T. Studies of polaron motion: Part II. The "small" polaron. Annals of Phys. 1959;8:343-389. doi: 10.1016/0003-4916(59)90003-X
- Korshunova A.N., Lakhno V.D. Simulation of the Stationary and Nonstationary Charge Transfer Conditions in a Uniform Holstein Chain Placed in Constant Electric Field. Technical Physics. 2018;63(9):1270-1276. doi: 10.1134/S1063784218090086
- Lakhno V.D., Fialko N.S. Bloch oscillations in a homogeneous nucleotide chain. JETP Lett. 2004. V. 79. P. 464–467. 2004;79(10):575-578. doi: 10.1134/1.1780553
|
|
|