Russian version English version
Volume 16   Issue 2   Year 2021
Korshunova A.N., Lakhno V.D.

Charge Motion along Polynucleotide Chains in a Constant Electric Field Depends on the Charge Coupling Constant with Chain Displacements

Mathematical Biology & Bioinformatics. 2021;16(2):411-421.

doi: 10.17537/2021.16.411.


  1. Chetverikov A.P., Ebeling W., Lakhno V.D., Velarde M.G. Discrete-breather-assisted charge transport along DNA-like molecular wires. Phys. Rev. E. 2019;100:052203. doi: 10.1103/PhysRevE.100.052203
  2. Taniguchi M., Kawai T. DNA electronics. Physica E. 2006;33:1-12. doi: 10.1016/j.physe.2006.01.005
  3. Starikov E.B., Lewis J.P., Sankey O.F. Base sequence effects on charge carrier generation in DNA: a theoretical study. International Journal of Modern Physics B. 2005;19(29):4331-4357. doi: 10.1142/S0217979205032802
  4. Astakhova T.Yu., Vinogradov G.A. Polarons on Dimerized Lattice of Polyacetilene. Continuum Approximation. Mathematical Biology and Bioinformatics. 2021;16(2):335-348. doi: 10.17537/2021.16.335
  5. Porath D., Bezryadin A., De Vries S., Dekker C. Direct measurement of electrical transport through DNA molecules. Nature. 2000;403:635-638. doi: 10.1038/35001029
  6. Kasumov A.Y., Kociak M., Guéron S., Reulet B., Volkov V.T., Klinov D.V., Bouchiat H. Proximity-Induced Superconductivity in DNA. Science. 2001;291(5502):280-282. doi: 10.1126/science.291.5502.280
  7. Lakhno V.D. DNA nanobioelectronics. Int. Quantum. Chem. 2008;108:1970-1981. doi: 10.1002/qua.21717
  8. Porath D., Cuniberti G., Di Felice R. Charge transport in DNA-based devices. Top. Curr. Chem. 2004;237:183-227. doi: 10.1007/b94477
  9. Eudres R.G., Cox D.L., Singh R.R.P. Colloquium: The quest for high-conductance DNA. Rev. Mod. Phys. 2004;76:195-214. doi: 10.1103/RevModPhys.76.195
  10. Fialko N.S., Lakhno V.D. Dynamics of Large Radius Polaron in a Model Polynucleotide Chain with Random Perturbations. Math. Biol. Bioinf. 2019;14(2):406-419. doi: 10.17537/2019.14.406
  11. Fuentes M.A., Maniadis P., Kalosakas G., Rasmussen K.O., Bishop A.R., Kenkre V.M., Gaididei Yu.B. Multipeaked polarons in soft potentials. Phys. Rev. E. 2004;70:025601. doi: 10.1103/PhysRevE.70.025601
  12. Hennig D., Burbanks A.D., Osbaldestin A.H. Directed current in the Holstein system. Phys. Rev. E. 2011;83:031121. doi: 10.1103/PhysRevE.83.031121
  13. Yakushevich L.V., Balashova V.N., Zakiryanov F.K. On the DNA Kink Motion Under the Action of Constant Torque. Math. Biol. Bioinf. 2016;11(1):81-90. doi: 10.17537/2016.11.81
  14. Lakhno V.D. Davydov's solitons in a homogeneous nucleotide chain. Int. J. Quant. Chem. 2010;110:127-137. doi: 10.1002/qua.22264
  15. Korshunova A.N., Lakhno V.D. The Peculiarities of Polaron Motion in the Molecular Polynucleotide Chains of Finite Length In The Presence Of Localized Excitations in the Chain. Math. Biol. Bioinf.. 2017;12(1):204-223 (in Russ.) doi: 10.17537/2017.12.204
  16. Conwell E.M., Rakhmanova S.V. Polarons in DNA. Proc. Natl. Acad. Sci. 2000;97:4556-4560. doi: 10.1073/pnas.050074497
  17. Lakhno V.D. Soliton-like Solutions and Electron Transfer in DNA. J. Biol. Phys. 2000;26:133-147. doi: 10.1023/A:1005275211233
  18. Korshunova A.N., Lakhno V.D. A new type of localized fast moving electronic excitations in molecular chains. Physica E. 2014;60:206-209. doi: 10.1016/j.physe.2014.02.025
  19. Zhongkai Huang, Masayuki Hoshina, Hajime Ishihara, Yang Zhao. Transient dynamics of super Bloch oscillations of a one dimensional Holstein polaron under the influence of an external AC electric field. Annalen der Physik. 2017;529:1600367. doi: 10.1002/andp.201600367
  20. De Pablo P.J., Moreno-Herrero F., Colchero J., Gómez Herrero J., Herrero P., Baró A.M., Ordejón P., Soler J.M., Artacho E. Absence of dc-Conductivity in λ-DNA. Phys. Rev. Lett. 2000;85:4992-4995. doi: 10.1103/PhysRevLett.85.4992
  21. Lakhno V.D., Korshunova A.N. Bloch oscillations of a soliton in a molecular chain. Eur. Phys. J. B. 2007;55:85-87. doi: 10.1140/epjb/e2007-00045-3
  22. Lakhno V.D., Korshunova A.N. Electron motion in a Holstein molecular chain in an electric field. Euro. Phys. J. B. 2011;79:147-151. doi: 10.1140/epjb/e2010-10565-2
  23. Voulgarakis N.K. The effect of thermal fluctuations on Holstein polaron dynamics in electric Field. Physica B. 2017;519:15-20. doi: 10.1016/j.physb.2017.04.030
  24. Korshunova A.N., Lakhno V.D. Charge Transfer by Polarons in a Homogeneous Poly G/Poly C-Chain Subjected to a Constant Electric Field in Terms of the Peyrard–Bishop–Holstein Model. Technical Physics. 2020;65(9):1467-1474. doi: 10.1134/S1063784220090200
  25. Astakhova T., Vinogradov G. New aspects of polaron dynamics in electric field. Eur. Phys. J. B. 2019;92:247. doi: 10.1140/epjb/e2019-100339-y
  26. Holstein T. Studies of polaron motion: Part I. The molecular-crystal model. Annals of Phys. 1959;8:325-342. doi: 10.1016/0003-4916(59)90002-8
  27. Holstein T. Studies of polaron motion: Part II. The "small" polaron. Annals of Phys. 1959;8:343-389. doi: 10.1016/0003-4916(59)90003-X
  28. Korshunova A.N., Lakhno V.D. Simulation of the Stationary and Nonstationary Charge Transfer Conditions in a Uniform Holstein Chain Placed in Constant Electric Field. Technical Physics. 2018;63(9):1270-1276. doi: 10.1134/S1063784218090086
  29. Lakhno V.D., Fialko N.S. Bloch oscillations in a homogeneous nucleotide chain. JETP Lett. 2004. V. 79. P. 464–467. 2004;79(10):575-578. doi: 10.1134/1.1780553
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2021.16.411
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)
References Translation into Russian
Math. Biol. Bioinf.
doi: 10.17537/2022.17.t1

Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024