Russian version English version
Volume 16   Issue 2   Year 2021
Medvedev A.E., Golysheva P.S.

Simulation of Air Motion in Human Lungs during Breathing. Dynamics of Liquid Droplet Precipitation in the Case of Medicine Drug Aerosols

Mathematical Biology & Bioinformatics. 2021;16(2):422-438.

doi: 10.17537/2021.16.422.

References

  1. Peters A., Wichmann H.E., Tuch T., Heinrich J., Heyder J. Respiratory Effects are Associated with the Number of Ultrafine Particles. Am. J. Respir. Crit. Care Med. 1997;155:1376–1383. doi: 10.1164/ajrccm.155.4.9105082
  2. Weibel E.R. Morfometriia legkikh cheloveka. Moscow, 1970. 176 p. (Translation of: Weibel E.R. Morphometry of the Human Lung. Springer; 1963). doi: 10.1007/978-3-642-87553-3
  3. Nowak N., Kadake P.P., Annapragada A.V. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Journal Annals of Biomedical Engineering. 2003;31(4):374–390. doi: 10.1114/1.1560632
  4. Zhang Z., Kleinstreuer C., Kim C.S. Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model. Journal Annals of Biomedical Engineering. 2008;36(12):2095–2110. doi: 10.1007/s10439-008-9583-z
  5. Islam M.S., Paul G., Ong H.X., Young P.M., Gu Y.T., Saha S.C. A Review of Respiratory Anatomical Development, Air Flow Characterization and Particle Deposition. International Journal of Environmental Research and Public Health. 2020;17(2):380. doi: 10.3390/ijerph17020380
  6. Walters D.K., Burgreen G.W., Hester R.L., Thompson D.S., Lavallee D.M., Pruett W.A., Wang X. Cyclic Breathing Simulations in Large-Scale Models of the Lung Airway from the Oronasal Opening to the Terminal Bronchioles. J. Fluids Eng. 2014;136:101101. doi: 10.1115/1.4027485
  7. Islam M.S., Saha S.C., Sauret E., Gemci T., Yang I.A., Gua Y.T. Ultrafine particle transport and deposition in a large scale 17-generation lung model. Journal of Biomechanics. 2017;64:16–25. doi: 10.1016/j.jbiomech.2017.08.028
  8. Islam M.S., Saha S.C., Young P.M. Aerosol particle transport and deposition in a CT-based lung airway for helium-oxygen mixture. In: Proceedings of the 21st Australasian Fluid Mechanics Conference (Adelaide, Australia 10–13 Desember 2018). 2018.
  9. Medvedev A.E., Gafurova P.S. Analytical Design of the Human Bronchial Tree for Healthy Patients and Patients with Obstructive Pulmonary Diseases. Mathematical Biology and Bioinformatics. 2019;14(Suppl):162–175. doi: 10.17537/2019.14.t62
  10. Medvedev A.E. Method of Constructing an Asymmetric Human Bronchial Tree in Normal and Pathological Cases. Mathematical Biology and Bioinformatics. 2020;15(Suppl):t21–t31. doi: 10.17537/2020.15.t21
  11. Tena A.F., Casan P., Fernández J., Ferrera C., Marcos A. Characterization of particle deposition in a lung model using an individual path. EPJ Web of Conferences. 2013;45:01079. doi: 10.1051/epjconf/20134501079
  12. Tena A.F., Francos J.F., Álvarez E., Casan P. A three dimensional in SILICO model for the simulation of inspiratory and expiratory airflow in humans. Engineering Applications of Computational Fluid Mechanics. 2015;9(1):187–198. doi: 10.1080/19942060.2015.1004819
  13. Tena A.F., Fernández J., Álvarez E., Casan P., Keith Walters D. Design of a numerical model of lung by means of a special boundary condition in the truncated branches. International Journal for Numerical Methods in Biomedical Engineering. 2017;33(6):e2830. doi: 10.1002/cnm.2830
  14. Medvedev A.E., Fomin V.M., Gafurova P.S. Three-Dimensional Model of the Human Bronchial Tree-Modeling of the Air Flow in Normal and Pathological Cases. Journal of Applied Mechanics and Technical Physics. 2020;61(1). doi: 10.1134/S0021894420010010
  15. Trusov P.V., Zaitseva N.V., Tsinker M.Yu. Modeling of human breath: conceptual and mathematical statements. Mathematical Biology and Bioinformatics. 2016;11(1):64–80. doi: 10.17537/2016.11.64
  16. Trusov P.V., Zaitseva N.V., Tsinker M.Yu., Babuskina A.V. Modelling Dusty Air Flow in the Human Resperatory Tract. Russian Journal of Biomechanics. 2018;22(3):301–314 (in Russ.). doi: 10.15593/RZhBiomeh/2018.3.03
  17. Miller M.R., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A., Crapo R., Enright P., van der Grinten C.P.M., Gustafsson P. et al. Standardisation of spirometry. European Respiratory Journal. 2005;26:319–338. doi: 10.1183/09031936.05.00034805
  18. Ganimedov V.L., Muchnaya M.I., Sadovskii A.S. Air flow in the human nasal cavity. Results of mathematical modelling. Russian Journal of Biomechanics. 2015;19(1):31–44. doi: 10.15593/RJBiomech/2015.1.03
  19. Fomin V.M., Vetlutsky V.N., Ganimedov V.L., Muchnaya M.I., Shepelenko V.N., Melnikov M.N., Savina A.A. Journal of Applied Mechanics and Technical Physics. 2010;51(2):233-240. doi: 10.1007/s10808-010-0033-y
  20. Ganimedov V.L., Muchnaya M.I. Numerical simulation of particle deposition in the human nasal cavity. Thermophysics and Aeromechanics. 2020;27(2):303-312. doi: 10.1134/S0869864320020122
  21. Lukyanov G.N., Voronin A.A., Rassadina A.A. Simulation of convective flows in irregular channels on the example of the human nasal cavity and paranasal sinuses. Technical Physics. 2017;62(3):484-489. doi: 10.1134/S1063784217030136
  22. Hermes O. Hadamard-Rybczynski Equation. Bellum Publ., 2012.
  23. Medvedev A.E., Gafurova P.S. Air flow and precipitation of medicine aerosol droplets in the human bronchial tree. AIP Conference Proceedings. 2021;2351(1):030018. doi: 1063/5.0051724
  24. Medvedev A.E., Gafurova P.S. Simulation of the deposition of aerosol droplets in a person’s bronchial tree. Journal of Physics: Conference Series. 2019;1404:012031. doi: 10.1088/1742-6596/1404/1/012031
Table of Contents Original Article
Math. Biol. Bioinf.
2021;16(2):422-438
doi: 10.17537/2021.16.422
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References Translation into English
Math. Biol. Bioinf.
2022;17(S):t14-t29
doi: 10.17537/2022.17.t14

Full text (eng., pdf)

 

  Copyright IMPB RAS © 2005-2024