Russian version English version
Volume 17   Issue 1   Year 2022
Boyko A.I., Rykunov S.D., Ustinin M.N.

A Software Package for the Modeling of Electrophysiological Activity Data

Mathematical Biology & Bioinformatics. 2022;17(1):1-9.

doi: 10.17537/2022.17.1.


  1. Magnetism in medicine: a handbook. Ed. Andra W., Nowak H. Wiley-VCH, 2007; 630 p.
  2. Hämäläinen M., Hari R., Ilmoniemi R.J., Knuutila J., Lounasmaa O.V. Magnitoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics. 1993;65(2). doi: 10.1103/RevModPhys.65.413
  3. Lewine J.D., Orrison W.W. Magnetic source imaging: Basic principles and applications in neuroradiology. Academic Radiology. 1995;2(5):436–440. doi: 10.1016/S1076-6332(05)80351-4
  4. Ribary U., Ioannides A.A., Singh K.D., Hasson R., Bolton J.P., Lado F., Mogilner A., Llinas R. Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proceedings of the National Academy of Sciences. 1991;88(24):11037–11041. doi: 10.1073/pnas.88.24.11037
  5. Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Physics in Medicine and Biology. 1987;32(1):11–22. doi: 10.1088/0031-9155/32/1/004
  6. Gramfort A., Papadopoulo T., Olivi E., Clerc M. OpenMEEG: opensource software for quasistatic bioelectromagnetics. BioMed Eng. OnLine. 2010;9. Article No. 45. doi: 10.1186/1475-925X-9-45
  7. Tadel F., Baillet S., Mosher J.C., Pantazis D., Leahy R.M. Brainstorm: A User-Friendly Application for MEG/EEG Analysis. Computational Intelligence and Neuroscience. 2011;2011. doi: 10.1155/2011/879716
  8. Oostenveld R., Fries P., Maris E., Schoffelen J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and Neuroscience. 2011;2011. doi: 10.1155/2011/156869
  9. Hinkley L.B.N., Dale C.L., Cai C., Zumer J., Dalal S., Findlay A., Sekihara K., Nagarajan S.S. NUTMEG: Open Source Software for M/EEG Source Reconstruction. Frontiers in Neuroscience. 2020;14. doi: 10.3389/fnins.2020.00710
  10. Cuffin B.N., Cohen D. Magnetic Fields of a Dipole in Special Volume Conductor Shapes. IEEE Transactions on Biomedical Engineering. 1977;BME-24(4):372–381. doi: 10.1109/TBME.1977.326145
  11. Huang M.X., Mosher J.C., Leahy R.M. A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. Physics in Medicine and Biology. 1999;44(2):423–440. doi: 10.1088/0031-9155/44/2/010
  12. Nolte G. The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Physics in Medicine and Biology. 2003;48(22):3637–3652. doi: 10.1088/0031-9155/48/22/002
  13. Llinás R.R., Ustinin M.N. Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization. Front. Neural Circuits. 2014;8. Article No. 43. doi: 10.3389/fncir.2014.00043
  14. Llinás R.R., Ustinin M.N., Rykunov S.D., Boyko A.I., Sychev V.V., Walton K.D., Rabello G.M., Garcia J. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data. Front. Neurosci. 2015;9. Article No. 373. doi: 10.3389/fnins.2015.00373
  15. Mosher J.C., Leahy R.M., Lewis P.S. EEG and MEG: forward solutions for inverse methods. IEEE Transactions on Biomedical Engineering. 1999;46(3):245–259. doi: 10.1109/10.748978
  16. Garrett M.W. Calculation of fields, forces, and mutual inductances of current systems by elliptic integrals. J. Appl. Phys. 1963;34:567–2573. doi: 10.1063/1.1729771
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2022.17.1
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024