References
- Antal T.K. Mechanisms of adaptation of the photosynthetic apparatus to deficiency basic elements of mineral nutrition: abstract of the PhD dissertation. Moscow, 2018. 46 p. (in Russ.).
- Riznichenko G.Yu., Rubin A.B. Dynamic models of electron transport during photosynthesis. Moscow, 2020. 332 p. (in Russ.).
- Wu H., Li T., Lv J., Chen Z., Wu J., Wang N., Wu H., Xiang W. Growth and biochemical composition characteristics of Arthrospira platensis induced by simultaneous nitrogen deficiency and seawater-supplemented medium in an outdoor raceway pond in winter. Foods. 2021;10. doi: 10.3390/foods10122974
- Marrez D.A.L., Naguib M.M., Sultan Y.Y., Daw Z.Y., Higazy A.M. Evaluation of chemical composition for Spirulina platensis in different culture media. Res. J. Pharm. Biol. Chem. Sci. 2014;5:1161–1171.
- Zarrouk C. Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Setch et Gardner) Geitler: ph. d. thèse. Paris, 1966. 114 p.
- Terskov I.A., Trenkenshu R.P., Belianin V.N. Izvestiia Akademii nauk SSSR. Seriia biologicheskaia (Bulletin of the USSR Academy of Sciences. Biological series). 1981;2(10):103–108 (in Russ.).
- Semenenko V.E. Katalog kul'tur mikrovodoroslei v kollektsiiakh SSSR (Catalog of microalgae cultures in the collections of the USSR). Moscow, 1991. 231 p. (in Russ.).
- Macintyre H.L., Kana T.M., Anning T., Geider R.J. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J. Phycol. 2002;38:17–38. doi: 10.1046/j.1529-8817.2002.00094.x
- Efimova T.V. Deistvie spektral'nogo sostava sveta na strukturnye i funktsional'nye kharakteristiki mikrovodoroslei (The Effect of the Spectral Composition of Light on the Structural and Functional Characteristics of Microalgae): abstract of the PhD dissertation Sevastopol', 2021. 28 p. (in Russ.).
- Pronina N.A. The organization and physiological role of the CO2-cm in microalgal photosynthesis. Russian Journal of Plant Physiology. 2000;47(5):706–714.
- Dyhrman S.T. Nutrients and their acquisition: phosphorus physiology in microalgae. Dev. Appl. Phycol. 2016;6. doi: 10.1007/978-3-319-24945-2_8
- Sanz-Luque E., Chamizo-Ampudia A., Llamas A., Galvan A., Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. Front. Plant. Sci. 2015;6(899). doi: 10.3389/fpls.2015.00899
- Solovchenko A.E., Selivanova E.A., Chekanov K.A., Sidorov R.A., Nemtseva N.V., Lobakova E.S. Induction of secondary carotenogenesis in new halophile microalgae from the genus Dunaliella (Chlorophyceae). Biochemistry (Moscow). 2015;80(11):1508–1513. doi: 10.1134/S0006297915110139
- Shoman N.Yu. Sovmestnoe deistvie sveta, temperatury i obespechennosti azotom na skorost' rosta i soderzhanie khlorofilla a u morskikh diatomovykh vodoroslei (The combined effect of light, temperature, and nitrogen availability on growth rate and chlorophyll a content in marine diatoms): abstract of the PhD dissertation. Sevastopol', 2021. 23 p. (in Russ.).
- Solomonova E.S. Otsenka fiziologicheskogo sostoianiia mikrovodoroslei s pomoshch'iu tsitometricheskikh i fluorestsentnykh pokazatelei (Assessment of the physiological state of microalgae using cytometric and fluorescent indicators): abstract of the PhD dissertation. Sevastopol', 2021. 23 p. (in Russ.).
- Monod J. The growth of bacterial cultures. Ann. Rev. Microbiol. 1949;3:371–394. doi: 10.1146/annurev.mi.03.100149.002103
- Flynn K.J. A mechanistic model for describing dynamic multi-nutrient, light, temperature interaction in phytoplankton. J. Plan. Res. 2001;23:977–997. doi: 10.1093/plankt/23.9.977
- Nisbet R.M., Jusup M., Klanjscek T., Pecquerie L. Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models. J. Experim. Biol. 2012;215:892–902. doi: 10.1242/jeb.059675
- Lelekov A.S., Trenkenshu R.P. Two-Component Model of Microalgae Growth in the Turbidostat. Mathematical Biology and Bioinformatics. 2021;16(1):101–114 (in Russ.). doi: 10.17537/2021.16.101
- Abakumov A.I., Pak S.Ya. Modeling of Photosynthesis Process and Assessing Of Phytoplankton Dynamics Based On Droop Model. Mathematical Biology and Bioinformatics. 2021;16(2):380–393 (in Russ.). doi: 10.17537/2021.16.380
- Kopytov Yu.P., Lelekov A.S., Gevorgiz R.G., Nekhoroshev M.V., Novikova T.M. Method for the complex determination of the biochemical composition of microalgae. Algology. 2015;25(2):35–40 (in Russ.).
- Naqvi K.R., Merzlyak M.N., Melo T.B. Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations. Photochem. Photobiol. Sci. 2004;3:132–137. doi: 10.1039/b304781d
- Kupper H., Seibert S., Parameswaran A. Fast, sensitive and inexpensive alternative to analytical pigment HPLC: quantification of chlorophylls and carotenoids in crude extracts by fitting with Gauss peak spectra. Analyt. Chem. 2007;79(20):7611–7627. doi: 10.1021/ac070236m
- Lehmuskero A., Skogen Chauton M., Boström T. Light and photosynthetic microalgae: A review of cellular- and molecular-scale optical processes. Progr. Oceanogr. 2018;168:43–56. doi: 10.1016/j.pocean.2018.09.002
- Merzlyak M.N., Naqvi K.R. On recording the true absorption and scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium anabaena variabilis. J. Photochem. Photobiol. B: Biology. 2000;58:123–129. doi: 10.1016/S1011-1344(00)00114-7
- Merzlyak M.N., Chivkunova O.B., Solovchenko A.E., Maslova I.P., Klyachko-Gurvich G.L., Naqvi K.R. Light absorption and scattering by cell suspensions of some cyanobacteria and microalgae. Russian Journal of Plant Physiology. 2008;55(3):420–425. doi: 10.1134/S1021443708030199
- Krichen E., Rapaport A., Le Floc’h E., Fouilland E. A new kinetics model to predict the growth of micro-algae subjected to fluctuating availability of light. Algal Research. 2021;58:102–362. doi: 10.1016/j.algal.2021.102362
- Belyanin V.N., Sidko F.Ya., Trenkenshu A.P. Energetika fotosinteziruiushchei kul'tury mikrovodoroslei (Energy of photosynthetic culture of microalgae). Novosibirsk, 1980. 136 p. (in Russ.).
- Zavorueva E.N., Zavoruev V.V., Krum S.P. Labil'nost' pervoi fotosistemy fototrofov v razlichnykh usloviiakh okruzhaiushchei sredy (Lability of the first photosystem of phototrophs under various environmental conditions). Krasnoiarsk, 2011. 152 p. (in Russ.).
- Trenkenshu R.P., Lelekov A.S., Borovrov A.B., Novikova T.M. Unified installation for microalgae laboratory studies. Issues of Modern Algology. 2017;1(13) (in Russ.). http://algology.ru/1097 (accessed 20 May 2022).
- Gevorgiz R.G., Malakhov A.S. Pereschet velichiny osveshchennosti fotobioreaktora v velichinu obluchennosti (Recalculation of the illumination value of the photobioreactor into the value of irradiation). Sevastopol', 2018 (in Russ.).
- Gevorgiz R.G. Kolichestvennoe opredelenie massovoi doli khlorofilla a v sukhoi biomasse Spirulina (Arthrospira) platensis North. Geitl. (Quantitative determination of the mass fraction of chlorophyll a in the dry biomass of Spirulina (Arthrospira) platensis North. Geitl.): teaching aid. Sevastopol', 2017 (in Russ.).
- Trenkenshu R.P., Lelekov A.S., Novikova T.M. Linear growth of marine microalgae culture. Marine Biological Journal. 2018;3(1):53–60. doi: 10.21072/mbj.2018.03.1.06
- Minyuk G.S., Drobetskaya I.V., Trenktnshu R.P., Vyalova O.Y. Growth and biochemical characteristics of Spirulina platensis (nordst.) geitler under different conditions of nitrogen nutrition. Ekologiya Moray (Sea Ecology). 2002;62:61–66 (in Russ.).
- Jallet D., Caballero M.A., Gallina A.A., Youngblood M., Peers G. Photosynthetic physiology and biomass partitioning in the model diatom Phaeodactylum tricornutum grown in a sinusoidal light regime. Algal Research. 2016;18:51–60. doi: 10.1016/2016.05.014
- Gulyayev B.A., Litvin F.F. First and second derivatives of the absorption spectrum of chlorophyll and associated pigments in cells of higher plants and algae at 20 °C. Biophysics. 1970;15(4):670–680.
- Bidigare R.R., Ondrusek M.E., Morrow J.H., Kiefer D.A. In-vivo absorption properties of algal pigments. Ocean Optics X. 1990;1302:290–302. doi: 10.1117/12.21451
- Hoepffner N., Sathyendranath S. Effect of pigment composition on absorption properties of phytoplankton. Mar. Ecol. Prog. Ser. 1991;73(1):11–23. doi: 10.3354/meps073011
- Jeffrey S.W., Mantoura R.F.C., Wright S.W. Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, 1997. 661 p.
- Ñòàäíè÷óê È.Í. Stadnichuk I.N. Fikobiliproteiny. Biologicheskaia khimiia (Phycobiliproteins. Biological chemistry). Moscow, 1990. 196 p. (in Russ.).
- Myers J., Graham J.R., Wang R.T. On spectral control of pigmentation in Anacystis nidulans (Cyanophyceae). J. Phycol. 1978;14(4):513–518. doi: 10.1111/j.1529-8817.1978.tb02478.x
- Arnon D.I., McSwain B.D., Tsujimoto H.Y., Wada K. Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. Bioch. Biophys. Acta. 1974;357(2):231–245. doi: 10.1016/0005-2728(74)90063-2
|
|
|