Russian version English version
Volume 17   Issue 2   Year 2022
Demicheva E.I.1,2, Shinwari K.2, Ushenin K.S.1,2, Bolkov M.A.1,2

Additional Pathogenic Pathways in RBCK1 Deficiency

Mathematical Biology & Bioinformatics. 2022;17(2):174-187.

doi: 10.17537/2022.17.174.

References

  1. de Jesus A.A., Goldbach-Mansky R. Genetically defined autoinflammatory diseases. Oral Diseases. 2016;22(7):591-604. doi: 10.1111/odi.12448
  2. McDermott F., Aksentijevich I., Galon J., McDermott E.M., Ogunkolade B.W., Centola M., Mansfield E., Gadina M., Karenko L., Pettersson T. et al. Germline mutations in the extracellular domains of the 55 kda tnf receptor, tnfr1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999;97(1):133-144. doi: 10.1016/S0092-8674(00)80721-7
  3. Touitou I., Lesage S., McDermott M., Cuisset L., Hoffman H., Dode C., Shoham N., Aganna E., Hugot J.-P., Wise C. et al. Infevers: an evolving mutation database for autoinflammatory syndromes. Hum. Mutat. 2004;24(3):194-198. doi: 10.1002/humu.20080
  4. Perazzio S.F., Allenspach E.J., Eklund K.K., Varjosalo M., Shinohara M.M., Torgerson T.R., Seppänen M.R.J. Behçet disease (bd) and bd-like clinical phenotypes: Nf-b pathway in mucosal ulcerating diseases. Scand. J. Immunol. 2020;92(5):e12973. doi: 10.1111/sji.12973
  5. Kelsall I., McCrory E.H., Xu Y., Scudamore C., Nanda S.K., Mancebo-Gamella P., Wood N.T., Knebel A., Matthews S.J., Cohen P. Hoil-1-catalysed ubiquitylation of unbranched glucosaccharides and its activation by ubiquitinoligomers: preprint of bioRxiv. 2021. doi: 10.1101/2021.09.10.459791
  6. Bolstad M., Irizarry R.A., Astrand M., Speed T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185-193. doi: 10.1093/bioinformatics/19.2.185
  7. Efron B., Tibshirani R., Storey J.D., Tusher V. Empirical bayes analysis of a microarray experiment. Journal of the American Statistical Association. 2001;96(456):1151-1160. doi: 10.1198/016214501753382129
  8. Russo P., Ferreira G.R., Cardozo L.E., Bürger M.C., Arias-Carrasco R., Maruyama S.R., Hirata T.D.C., Lima D.S., Passos F.M., Fukutani K.F., Lever M., Silva J.S., Maracaja-Coutinho V., Nakaya H.I. Cemitool: a bioconductor package for perform-ing comprehensive modular co-expression analyses. BMC Bioinformatics. 2018;19(1). doi: 10.1186/s12859-018-2053-1
  9. Khatri P., Sirota M., Butte A.J. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput. Biol. 2012;8(2):e1002375. doi: 10.1371/journal.pcbi.1002375
  10. Falcon S., Gentleman R. Hypergeometric Testing Used for Gene Set Enrichment Analysis. In: Bioconductor Case Studies. Use R!. New York: Springer, 2008:207-220. doi: 10.1007/978-0-387-77240-0_14
  11. Kanehisa M., Goto S. Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Research. 2000;28(1):27-30. doi: 10.1093/nar/28.1.27
  12. The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong Nucleic Acids Research. 2019;47:D330-D338. doi: 10.1093/nar/gky1055
  13. Martens M., Ammar A., Riutta A., Waagmeester A., Slenter D.N., Hanspers K., Miller R.A., Digles D., Lopes E.N., Ehrhart F. et al. WikiPathways: connecting communities. Nucleic Acids Research. 2021;49(D1):D613-D621. doi: 10.1093/nar/gkaa1024
  14. Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research. 2018;47(D1):D607-D613. doi: 10.1093/nar/gky1131
  15. Zar H. Spearman rank correlation. Encyclopedia of Biostatistics. 2005. doi: 10.1002/0470011815.b2a15150
  16. Davis S., Meltzer P.S. Geoquery: a bridge between the gene expression omnibus (geo) and bioconductor. Bioinformatics. 2007;23(14):1846-1847. doi: 10.1093/bioinformatics/btm254
  17. Ritchie M., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. limma powers differential expression analyses for rna-sequencing and microarray studies. Nucleic Acids Research. 2015;43(7):e47. doi: 10.1093/nar/gkv007
  18. Yu G., Wang L.G., Han Y., He Q.Y. clusterProfiler: an r package for comparing biological themes among gene clusters. OMICSMay. 2012;16(5):284-287. doi: 10.1089/omi.2011.0118
  19. Liu T., Zhang L., Joo D., Sun. Nf-b signaling in inflammation. Sig. Transduct. Target. Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23
  20. Iwai K. Lubac-mediated linear ubiquitination: a crucial regulator of immune signaling. Proceedings of the Japan Academy Series B, Physical and biological sciences. 2021;97(3):120-133. doi: 10.2183/pjab.97.007
  21. Thomsen C., Malfatti E., Jovanovic A., Roberts M., Kalev O., Lindberg C., Oldfors A. Proteomic characterization of polyglucosan bodies in skeletal muscle in rbck1 deficiency. Neuropathology and Applied Neurobiology. 2021;10. doi: 10.1111/nan.12761
  22. Nilsson J., Schoser B., Laforet P., Kalev O., Lindberg C., Romero N.B., López M.D., Akman H.O., Wahbi K., Iglseder S. et al. Polyglucosan body myopathy caused by defective ubiquitin ligase rbck1. Ann. Neurol. 2013;74(6):914-919. doi: 10.1002/ana.23963
  23. Li X., Wan T., Li Y. Role of foxo1 in regulating autophagy in type 2 diabetes mellitus (review). Experimental and Therapeutic Medicine. 2021;22(707). doi: 10.3892/etm.2021.10139
  24. Porciello N., Kunkl M., Viola A., Tuosto L. Phosphatidylinositol 4-phosphate 5-kinases in the regulation of t cell activation. Frontiers in Immunology. 2016;7:186. doi: 10.3389/fimmu.2016.00186
  25. Yang R.Z., Lee M.J., Hu H., Pray J., Wu H.-B., Hansen B.C., Shuldiner A.R., Fried S.K., McLenithan J.C., Gong D.-W. et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am. J. Physiol. Endocrinol. Metab. 2006;290(6):E1253-E1261. doi: 10.1152/ajpendo.00572.2004
  26. Zhao H., Tang M., Liu M., Chen L. Glycophagy: An emerging target in pathology. Clin. Chim. Acta. 2018;484:298-303. doi: 10.1016/j.cca.2018.06.014
  27. Zhu Y., Kakinuma N., Wang Y., Kiyama R. Kank proteins a new family of ankyrin-repeat domain-containing proteins. Biochim. Biophys. Acta. 2008;1780(2):128-133. doi: 10.1016/j.bbagen.2007.09.017
  28. Gee H. Y., Zhang F., Ashraf S., Kohl S., Sadowski C.E., Vega-Warner V., Zhou W., Lovric S., Fang H., Nettleton M. et al. KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J. Clin. Invest. 2015;125(6):2375-2384. doi: 10.1172/JCI79504
  29. Thumkeo D., Watanabe S., Narumiya S. Physiological roles of rho and rho effectors in mammals. Eur. J. Cell Biol. 2013;92(10-11):303-315. doi: 10.1016/j.ejcb.2013.09.002
  30. Dai Y., Luo W., Chang J. Rho kinase signaling and cardiac physiology. Curr. Opin. Physiol. 2018;1:14-20. doi: 10.1016/j.cophys.2017.07.005
  31. Bayot A., Reichman S., Lebon S., Csaba Z., Aubry L., Sterkers G., Husson I., Rak M., Rustin P. Cis-silencing of PIP5K1B evidenced in friedreich’s ataxia patient cells results in cytoskeleton anomalies. Hum. Mol. Genet. 2013;22(14):2894-2904. doi: 10.1093/hmg/ddt144
  32. Hanson E., Sheldon M., Pacheco B., Alkubeysi M., Raizada V. Heart disease in friedreich’s ataxia. World J. Cardiol. 2019;11(1):1-12. doi: 10.4330/wjc.v11.i1.1
  33. Huynh N., Ou Q., Cox P., Lill R., King-Jones K. Glycogen branching enzyme controls cellular iron homeostasis via iron regulatory protein 1 and mitoneet. Nature Communications. 2019;10(1):5463. doi: 10.1038/s41467-019-13237-8
  34. Yamanaka K., Ishikawa H., Megumi Y., Tokunaga F., Kanie M., Rouault T.A., Morishima I., Minato N., Ishimori K., Iwai K. Identification of the ubiquitin-protein ligase that recognizes oxidized irp2. Nat. Cell Biol. 2003;5(4):336-340. doi: 10.1038/ncb952
  35. Zhang M., Tian Y., Wang R., Gao D., Zhang Y., Diao F.-C., Chen D.-Y., Zhai Z.-H., Shu H.-B. Negative feedback regulation of cellular antiviral signaling by rbck1-mediated degradation of irf3. Cell Research. 2008;10(1038):1096-1104. doi: 10.1038/cr.2008.277
  36. Menezes M.C.S., Veiga A.D.M., de Lima T.M., Ariga S.K.K., Barbeiro H.V., de Lucena Moreira C., Pinto A.A.S., Brandao R.A., Marchini J.F., Alencar J.C. et al. Lower peripheral blood toll-like receptor 3 expression is associated with an unfavorable outcome in severe covid-19 patients. Sci. Rep. 2021;11:15223. doi: 10.1038/s41598-021-94624-4
Table of Contents Original Article
Math. Biol. Bioinf.
2022;17(2):174-187
doi: 10.17537/2022.17.174
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)
References
Supplementary data

 

  Copyright IMPB RAS © 2005-2024