Russian version English version
Volume 17   Issue 2   Year 2022
Kiryanova O.Yu.1, Kiryanov I.I.2, Kuluev B.R.3, Garafutdinov R.R.3, Chemeris A.V.3, Gubaydullin I.M.1, 4

Multiplex in silico RAPD-Analysis for Genome Barcoding

Mathematical Biology & Bioinformatics. 2022;17(2):208-229.

doi: 10.17537/2022.17.208.


  1. Bolotova N.L. In: Nauka – shkole. Sbornik nauchnykh publikatsii (Science - to school. Collection of scientific publications). 2017:119–174 (in Russ.).
  2. Hebert P.D.N., Cywinska A., Ball S.L., deWaard J.R. Biological identifications through DNA barcodes. Proceedings of the Royal Society. 2003;270(1512):313–321. doi: 10.1098/rspb.2002.2218
  3. Hebert P.D.N., Gregory T.R. The Promise of DNA Barcoding for Taxonomy. Systematic. Biology. 2005;54(5):852–859. doi: 10.1080/10635150500354886
  4. Ballard J.W.O., Whitlock M.C. The incomplete natural history of mitochondria. Molecular. Ecology. 2004;13(4):729–744. doi: 10.1046/j.1365-294X.2003.02063.x
  5. Schoch C., Seifert K., Huhndorf S., Vincent R., Spouge J., Levesque A., Wen C. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences. 2012;109(16):6241–6246. doi: 10.1073/pnas.1117018109
  6. Hollingsworth P. Forrest L. Spouge J., Hajibabaei M., Ratnasingham S., van der Bank M., Chase M., Cowan R. A DNA barcode for land plants. Proceedings of the National Academy of Sciences. 2009;106(31):12794–12797. doi: 10.1073/pnas.0905845106
  7. Nehal N., Choudhary B., Nagpure A., Gupta R.K. DNA barcoding: a modern age tool for detection of adulteration in food. Critical Reviews in Biotechnology. 2021;41(5):767–791. doi: 10.1080/07388551.2021.1874279
  8. Chatpiyaphat K., Sumruayphol S., Dujardin J.-P., Samung Y., Phayakkaphon A., Cui L., Ruangsittichai J., Sungvornyothin S., Sattabongkot J., Sriwichai P. Geometric morphometrics to distinguish the cryptic species Anopheles minimus and An. harrisoni in malaria hot spot villages, western Thailand. Medical and Veterinary Entomology. 2021;35(3):293–301. doi: 10.1111/mve.12493
  9. Panyukov V.V., Kiselev S.S., Alikina O.V., Nazipova N.N., Ozoline O.N. Short unique sequences in bacterial genomes as strain- and species-specific signatures. Mathematical Biology and Bioinforatics. 2017;12(2):547–558. doi: 10.17537/2017.12.547
  10. Panyukov V., Kiselev S., Ozoline O. Unique k-mers as strain-specific barcodes for phylogenetic analysis and natural microbiome profiling. Int. J. Mol. Sci. 2020;21(3):944. doi: 10.3390/ijms21030944
  11. Bartlett J.M.S., Stirling D. A Short History of the Polymerase Chain Reaction. PCR Protocols. 2003;226:3–6. doi: 10.1007/978-1-4612-0055-0_1
  12. Kuluev B.R., Baymiev A.K., Gerashchenkov G.A., Chemeris D.A., Zubov V.V., Kuluev A.R., Chemeris A.V. Random priming PCR strategies for identification of multilocus DNA polymorphism in eukaryotes. Russian Journal of Genetics. 2018;54(5):499–513. doi: 10.1134/S102279541805006X
  13. Williams J.G., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18:6531–6535. doi: 10.1093/nar/18.22.6531
  14. Corley-Smith G.E., Lim C.J., Kalmar G.B., Brandhorst B.P. Efficient Detection of DNA Polymorphisms by Fluorescent RAPD Analysis. BioTechniques. 1997;22(4):690–699. doi: 10.2144/97224st04
  15. Morton N.E. Parameters of the human genome. Proc. Natl. Acad. Sci. 1991;88:7474–7476. doi: 10.1073/pnas.88.17.7474
  16. Chemeris D.A., Kiryanova O.Yu., Gubaydullin I.M., Chemeris A.V. Design of primers for polymerase chain reaction (brief review of software and databases). Biomics. 2016;8(3):215–238 (in Russ.).
  17. Kiryanova O.Yu., Kiryanov I.I., Kuluev B.R., Chemeris A.V., Garafutdinov R.R., Gubaydullin I.M. ABCDNA_GS (AMPLIFIED BAR-CODED DNA GENOME/SPECIMEN): computer program registration certificate No. 2020610703 17.01.2020.
  18. Garafutdinov R.R., Baymiev An.K., Maleev G.V., Alexeyev Ya.I., Zubov V.V., Chemeris D.A., Kiryanova O.Yu., Gubaydullin I.M., Matniyazov R.T., Sakhabutdinova A.R., Nikonorov Yu.M., Kuluev B.R., Baymiev Al.K., Chemeris A.V. Diversity of PCR primers and principles of their design. Biomics. 2019;11(1):23–70 (in Russ.). doi: 10.31301/2221-6197.bmcs.2019-04
  19. Python. (accessed 15 September 2022).
  20. Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Wheeler D.L. GenBank. Nucleic Acids Res. 2007;36:D25–D30. doi: 10.1093/nar/gkm929
  21. 1001Genomes. (accessed 15 September 2022).
  22. National Library of Medicine. (accessed 15 September 2022).
  23. Knuth D., Morris J.H., Pratt V. Fast pattern matching in strings. SIAM Journal on Computing. 1977;6(2):323–350. doi: 10.1137/0206024
  24. Kiryanova O.Yu., Kuluev B.R., Kuluev A.R., Mardanshin I.S., Gubaydullin I.M., Chemeris A.V. Multiplex in silico RAPD-analysis of several related plants with different genome sizes and prospects for this approach for DNA-cataloguing of agricultural plant varieties. Biomics. 2020;12(2):194–210 (in Russ.). doi: 10.31301/2221-6197.bmcs.2020-10
  25. Kuluev B.R., Matniyazov R.T., Chemeris D.A., Chemeris A.V. Modern concepts about relationships in the wheat-aegilops alliance. Biomics. 2016;8(4):297–310 (in Russ.).
  26. Kiryanova O.Yu., Garafutdinov R.R., Chemeris D.A., Giniyatov Y.R., Gubaydullin I.M., Chemeris A.V. DNA polymorphism of dogs (canis familiaris l.). II. RAPD-analysis. Biomics. 2021;13(3):309–320 (in Russ.). doi: 10.31301/2221-6197.bmcs.2021-22
  27. Garafutdinov R.R., Gainullina K.P., Kiryanova O.Yu., Yurina A.V., Dolmatova I.Yu., Loginov O.N., Chemeris A.V. DNA polymorphism of horse Equus Caballus and methods of its detection. Biomics. 2020;12(2):272–299 (in Russ.). doi: 10.31301/2221-6197.bmcs.2020-16
  28. Zubov V.V., Chemeris D.A., Vasilov R.G., Kurochkin V.E., Alekseev YA.I. Brief history of high-throughput nucleic acid sequencing methods. Biomics. 2021;13(1):27–46 (in Russ.). doi: 10.31301/2221-6197.bmcs.2021-4
  29. Kuluev B.R., Baymiev An.Kh., Gerashchenkov G.A., Yunusbaev U.B., Garafutdinov R.R., Alekseev Ya.I., Baymiev Al.Kh., Chemeris A.V. One hundred years of haploid genomes. Now time comes for diploid. Biomics. 2020;12(4):411–434 (in Russ.). doi: 10.31301/2221-6197.bmcs.2020-33
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2022.17.208
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024