Russian version English version
Volume 17   Issue 2   Year 2022
Mavrodiev E.V.1, Tursky M.L.2,3, Mavrodiev N.E.4, Schroder L.5, Laktionov A.P.6, Ebach M.C.7, Williams D.M.8

On Classification and Taxonomy of Coronaviruses (Riboviria, Nidovirales, Coronaviridae) with Special Focus on Severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2)

Mathematical Biology & Bioinformatics. 2022;17(2):289-311.

doi: 10.17537/2022.17.289.


  1. Adams M.J., Lefkowitz E.J., King A.M.Q., Harrach B., Harrison R.L., Knowles N.J., Kropinski A.M., Krupovic M., Kuhn J.H., Mushegian A.R. et al. 50 years of the International Committee on Taxonomy of Viruses: progress and prospects. Arch. Virol. 2017;162(5):1441–1446. doi: 10.1007/s00705-016-3215-y
  2. Walker P.J., Siddell S.G., Lefkowitz E.J., Mushegian A.R., Dempsey D.M., Dutilh B.E., Harrach B., Harrison R.L., Hendrickson R.C., Junglen S. et al. Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses. Arch. Virol. 2019;164(9):2417–2429. doi: 10.1007/s00705-019-04306-w
  3. Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman B.W. et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020;5(4):536–544. doi: 10.1038/s41564-020-0695-z
  4. Gorbalenya A.E., Krupovic M., Mushegian A., Kropinski A.M., Siddell S.G., Varsani A., Adams M.J., Davison A.J., Dutilh B.E., Harrach B. et al. The new scope of virus taxonomy, partitioning the virosphere into 15 hierarchical ranks. Nat. Microbiol. 2020;5(6):668–674. doi: 10.1038/s41564-020-0709-x
  5. Siddell S.G., Walker P.J., Lefkowitz E.J., Mushegian A.R., Adams M.J., Dutilh B.E., Gorbalenya A.E., Harrach B., Harrison R.L., Junglen S. et al. Additional changes to taxonomy ratified in a special vote by the International Committee on Taxonomy of Viruses (October 2018). Arch. Virol. 2019;164(3):943–946. doi: 10.1007/s00705-018-04136-2
  6. Siddell S.G., Walker P.J., Lefkowitz E.J., Mushegian A.R., Dutilh B.E., Harrach B., Harrison R.L., Junglen S., Knowles N.J., Kropinski A.M. et al. Binomial nomenclature for virus species, a consultation. Arch. Virol. 2020;165(2):519–525. doi: 10.1007/s00705-019-04477-6
  7. Siddell S.G., Walker P.J., Lefkowitz E.J., Mushegian A.R., Dutilh B.E., Harrach B., Harrison R.L., Junglen S., Knowles N.J., Kropinski A.M. et al. Correction to: Binomial nomenclature for virus species, a consultation. Arch. Virol. 2020;165(5):1263. doi: 10.1007/s00705-020-04555-0
  8. MacLachlan N.J., Dubovi E.J., Barthold S.W., Swayne D.F., Winton R.J. Fenner's Veterinary Virology. 5th edn. Amsterdam: Elsevier Inc, 2016.
  9. Postler T., Clawson A.N., Amarasinghe G.K., Basler C.F., Bavari S., Benko M., Blasdell K.R., Briese T., Buchmeier M.J., Bukreyev A. et al. Possibility and challenges of conversion of current virus species names to Linnaean binomials. Syst. Biol. 2017;66(3):463–473. doi: 10.1093/sysbio/syw096
  10. Edgar R.C., Taylor J., Lin V., Altman T., Barbera P., Meleshko D., Lohr D., Novakovsky G., Buchfink B., Al-Shayeb B. et al. Petabase-scale sequence alignment catalyses viral discovery. bioRxiv. 2020. doi: 10.1101/2020.08.07.241729
  11. Bukhari K., Mulley G., Gulyaeva A.A., Zhao L., Shu G., Jiang J., Neuman B.W. Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the Coronavirinae, the proposed genus Alphaletovirus. Virology. 2018;524:160–171. doi: 10.1016/j.virol.2018.08.010
  12. Li T., Liu D., Yang Y., Guo J., Feng Y., Zhang X., Cheng S., Feng J. Phylogenetic supertree reveals detailed evolution of SARS-CoV-2. Sci. Rep. 2020;10(1):22366. doi: 10.1038/s41598-020-79484-8
  13. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574. doi: 10.1016/S0140-6736(20)30251-8
  14. Wu F., Zhao S., Yu B., Chen Y.-M., Wang W., Song Z.-G., Hu Y., Tao Z.-W., Tian J.-H., Pei Y.-Y. et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. doi: 10.1038/s41586-020-2008-3
  15. Kitching I.J., Forey P., Forey P.L., Humphries C., Williams D.M. Cladistics, the Theory and Practice of Parsimony Analysis. Oxford and New York: Oxford University Press, 1998. 228 p.
  16. Williams D.M., Ebach M.C. Foundations of Systematics and Biogeography. New York: Springer, 2008. 310 p. doi: 10.1007/978-0-387-72730-1
  17. Williams D.M., Ebach M.C. Cladistics, A guide to biological classification. Cambridge: Cambridge University Press, 2020. 452 p. doi: 10.1017/9781139047678
  18. Rambaut A., Holmes E.C., O'Toole Á., Hill V., McCrone J.T., Ruis C., du Plessis L., Pybus O.G. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 2020;5(11):1403–1407. doi: 10.1038/s41564-020-0770-5
  19. Farris J.S. The Logical Basis of Phylogenetic Analysis. In: Advances in Cladistics, 2. Eds. Platnick N.I., Funk V. New York: Columbia University Press, 1983. P. 7–36.
  20. Brower A.V.Z. Evolution is not a necessary assumption of cladistics. Cladistics. 2000;16(1):143–154. doi: 10.1111/j.1096-0031.2000.tb00351.x
  21. Mavrodiev E.V., Dell C., Schroder L. A laid-back trip through the Hennigian Forests. PeerJ. 2017;5:e3578. doi: 10.7717/peerj.3578
  22. Nelson G., Platnick N. Systematics and Biogeography, Cladistics and Vicariance. New York: Columbia University Press, 1981.
  23. Nelson G., Platnick N. Three-taxon statements, a more precise use of parsimony? Cladistics. 1991;7(4):351–366. doi: 10.1111/j.1096-0031.1991.tb00044.x
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359
  25. Felsenstein J. Inferring Phylogenies. Sunderland, MA: Oxford University Press; Sinauer Associates Inc., 2004.
  26. Williams D.M., Ebach M.C., Wheeler Q.D. Beyond Belief: The Steady Resurrection of Phenetics. In: Beyond Cladistics: The Branching of a Paradigm. Eds. Williams D.M., Knapp S. Berkeley, CA: University of California Press, 2010. P. 169–196. doi: 10.1525/9780520947993-013
  27. Tokarz R., Sameroff S., Hesse R.A., Hause B.M., Desai A., Jain K., Ian Lipkin W. Discovery of a novel nidovirus in cattle with respiratory disease. J. Gen. Virol. 2015;96(8):2188–2193. doi: 10.1099/vir.0.000166
  28. Wong A.C.P., Li X., Lau S.K.P., Woo P.C.Y. Global epidemiology of bat coronaviruses. Viruses. 2019;11(2):174. doi: 10.3390/v11020174
  29. Pipes L., Wang H., Huelsenbeck J.P., Nielsen R. Assessing uncertainty in the rooting of the SARS-CoV-2 phylogeny. Mol. Biol. Evol. 2021;38(4):1537–1543. doi: 10.1093/molbev/msaa316
  30. Zhou H., Chen X., Hu T., Li J., Song H., Liu Y., Wang P., Liu D., Yang J., Holmes E.C. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 2020;30(11):2196–2203. doi: 10.1016/j.cub.2020.05.023
  31. Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7
  32. Liu P., Jiang J.-Z., Wan X.-F., Hua Y., Li L., Zhou J., Wang X., Hou F., Chen J., Zou J., Chen J. Are pangolins the intermediate host of the 2019 novel coronavirus, SARS-CoV-2? PLoS Pathog. 2020;16:e1008421. doi: 10.1371/journal.ppat.1008421
  33. Helmy Y.A., Fawzy M., Elaswad A., Sobieh A., Kenney S.P., Shehata A.A. The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. J. Clin. Med. 2020;9(4):1225. doi: 10.3390/jcm9041225
  34. Draker R., Roper R.L., Petric M., Tellier R. The complete sequence of the bovine torovirus genome. Virus Res. 2006;115(1):56–68. doi: 10.1016/j.virusres.2005.07.005
  35. Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–3066. doi: 10.1093/nar/gkf436
  36. Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30(4):772–780. doi: 10.1093/molbev/mst010
  37. Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In: Gateway Computing Environments Workshop (GCE 2010): Proceedings of a Meeting Held 14 November 2010, New Orleans, Louisiana, USA. San-Diego, CA: IEEE and Curran Associates Inc., 2010. doi: 10.1109/GCE.2010.5676129
  38. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000;17(4):540–552. doi: 10.1093/oxfordjournals.molbev.a026334
  39. Gouy M., Guindon S., Gascuel O. SeaView version 4, a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010;27(2):221–224. doi: 10.1093/molbev/msp259
  40. Krishnamurthy S.R., Wang D. Origins and challenges of viral dark matter. Virus Res. 2017(239):136–142. doi: 10.1016/j.virusres.2017.02.002
  41. Lapointe F.J., Cucumel G. The average consensus procedure, combination of weighted trees containing identical or overlapping sets of taxa. Syst. Biol. 1997;46(2):306–312. doi: 10.1093/sysbio/46.2.306
  42. Lapointe F.J., Levasseur C. Everything You Always Wanted to Know About the Average Consensus, and More. In: Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Ed. Bininda-Emonds O.R.P. Dordrecht, Boston, London: Springer – Kluwer Academic Publisher, 2004. P. 87–105. doi: 10.1007/978-1-4020-2330-9_5
  43. Maddison W.P., Maddison D.R. Mesquite, a Modular System for Evolutionary Analysis. Version 3.70. Mesquite project. 2021. (accessed 07.11.2022).
  44. Swofford D.L. PAUP*. Phylogenetic Analysis using Parsimony* and Other Methods. Sunderland, MA: Sinauer Associates, 2002.
  45. Rambaut A., Drummond A.J. FigTree. Version 1.4.4 [Interne] Institute of Evolutionary Biology, University of Edinburgh. 2018. (accessed 07.11.2022).
  46. Rineau V., Zaragüeta R., Bardin J. Information content of trees, three-taxon statements, inference rules and dependency. Biol. J. Linn. Soc. 2021;133(4):1152–1170. doi: 10.1093/biolinnean/blab046
  47. Mavrodiev E.V., Madorsky A. TAXODIUM Version 1.0: a simple way to generate uniform and fractionally weighted three-item matrices from various kinds of biological data. PLoS ONE. 2012;7(11):e48813. doi: 10.1371/journal.pone.0048813
  48. Williams D.M., Siebert D.J. Characters Homology and, Three-Item Statement Analysis. In: Homology and Systematics, Coding Characters for Phylogenetic Analysis. Eds. Scotland R.W., Pennington R.T. New York: Chapman & Hall, London, 2000:183–208.
  49. Creevey C.J. Clann: Investigating Phylogenetic Information Through Supertree Analyses. Version 3.0. [Internet] The Lab. of James McInerney, Manchester, UK. 2004. (accessed 07.11.2022).
  50. Creevey C.J., McInerney J.O. Trees From Trees: Construction of Phylogenetic Supertrees Using Clann. In: Bioinformatics for DNA Sequence Analysis. Ed. Posada D. New York: Springer Humana Press, 2009. P. 139–161. doi: 10.1007/978-1-59745-251-9_7
  51. Zhou X., Shen X.X., Hittinger C.T., Rokas A. Evaluating fast maximum likelihood-based phylogenetic programs using empirical phylogenomic data sets. Mol. Biol. Evol. 2018;35(2):486–503. doi: 10.1093/molbev/msx302
  52. Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44(W1):232–235. doi: 10.1093/nar/gkw256
  53. Anisimova M., Gascuel O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst. Biol. 2006;55(4):539–552. doi: 10.1080/10635150600755453
  54. Ferron F., Debat H.J., Shannon A., Decroly E., Canard B. A N7-guanine RNA cap methyltransferase signature-sequence as a genetic marker of large genome, non-mammalian Tobaniviridae. NAR Genom. Bioinform. 2020;2(1):lqz022. doi: 10.1093/nargab/lqz022
  55. Sachs J.D., Karim S.S.A., Aknin L., Allen J., Brosbol K., Colombo F., Barron G.C., Espinosa M.F., Gaspar V., Gaviria A. et al. Commission on lessons for the future from the COVID-19 pandemic. The Lancet. 2022;400(10359):1224–1280. doi: 10.1016/S0140-6736(22)01585-9
  56. Holmes E.C., Goldstein S.A., Rasmussen A.L., Robertson D.L., Crits-Christoph A., Wertheim J.O., Anthony S.J., Barclay W.S., Boni M.F., Doherty P.C. et al. The origins of SARS-CoV-2: A critical review. Cell. 2021;184(19):4848–4856. doi: 10.1016/j.cell.2021.08.017
  57. Garry R.F. SARS-CoV-2 furin cleavage site was not engineered. PNAS. 2022;119(40):e2211107119. doi: 10.1073/pnas.2211107119
  58. Liu S.L., Saif L.J., Weiss S.R., Su L. No credible evidence supporting claims of the laboratory engineering of SARS-CoV-2. Emerg. Microbes Infect. 2020;9(1):505–507. doi: 10.1080/22221751.2020.1733440
  59. Domingo J.L. An updated review of the scientific literature on the origin of SARS-CoV-2. Environ. Res. 2022;215:114–131. doi: 10.1016/j.envres.2022.114131
  60. Chaw S.M., Tai J.H., Chen S.L., Hsieh C.H., Chang S.Y., Yeh S.H., Yang W.S., Chen P.J., Wang H.Y. The origin and underlying driving forces of the SARS-CoV-2 outbreak. J. Biomed. Sci. 2020;27(1):73. doi: 10.1186/s12929-020-00665-8
  61. Conceicao C., Thakur N., Human S., Kelly J.T., Logan L., Bialy D., Bhat S., Stevenson-Leggett P., Zagrajek A.K., Hollinghurst P. et al. The SARS-CoV-2 spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol. 2020;18(12):e3001016. doi: 10.1371/journal.pbio.3001016
  62. Enjuanes L., Zuñiga S., Castaño-Rodriguez C., Gutierrez-Alvarez J., Canton J., Sola I. Molecular basis of coronavirus virulence and vaccine development. Adv. Virus Res. 2016;96(8):245–286. doi: 10.1016/bs.aivir.2016.08.003
  63. Fehr A.R., Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In: Coronaviruses. Methods in Molecular Biology, vol. 1282. Eds. Maier H., Bickerton E., Britton P. New York: Humana Press, 2015. P. 1–26. doi: 10.1007/978-1-4939-2438-7_1
  64. Fielding B.C. Editorial: Human coronavirus research: 20 years since the SARS-CoV outbreak. Front. Microbiol. 2022;13:1035267. doi: 10.3389/fmicb.2022.1035267
  65. Liu D.X., Liang J.Q., Fung T.S. Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). Encyclopedia of Virology. 2021;2:428–440. doi: 10.1016/B978-0-12-809633-8.21501-X
  66. van der Hoek L. Human coronaviruses, what do they cause? Antivir. Ther. 2007;12:651–658. doi: 10.1177/135965350701200S01.1
  67. Woo P.C., Lau S.K., Chu C.M., Chan K.H., Tsoi H.W., Huang Y., Wong B.H., Poon R.W., Cai J.J., Luk W.K. et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 2005;79(2):884–895. 
  68. Abdel-Moneim A.S., Abdelwhab E.M. Evidence for SARS-CoV-2 infection of animal hosts. Pathogens. 2020;9(7):529. doi: 10.3390/pathogens9070529
  69. Murphy H., Ly H. What are the risk levels of humans contracting SARS‐CoV‐2 from pets and vice versa? J. Med. Virol. 2022;94(11):5613–5614. doi: 10.1002/jmv.28035
  70. Gorbalenya A.E., Siddell S.G. Recognizing species as a new focus of virus research. PLoS Pathog. 2021;17(3):e1009318. doi: 10.1371/journal.ppat.1009318
  71. Rossi G.A., Sacco O., Mancino E., Cristiani L., Midulla F. Differences and similarities between SARS-CoV and SARS-CoV-2: spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases. Infection. 2020;48(5):665–669. doi: 10.1007/s15010-020- 01486-5.
  72. Hadfield J., Megill C., Bell S.M., Huddleston J., Potter B., Callender C., Sagulenko P., Bedford T., Neher R.A. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34(23):4121–4123. doi: 10.1093/bioinformatics/bty407
  73. Chaley M.B., Kutyrkin V.A. Coronavirus genus recognition based on prototype virus variants. Math. Biol. Bioinf. 2022;17(1):10–27. doi: 10.17537/2022.17.10
  74. Van Regenmortel M.H.V. Classes, taxa and categories in hierarchical virus classification: a review of current debates on definitions and names of virus species. Bionomina. 2016;10(1):1–21. doi: 10.11646/bionomina.10.1.1
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2022.17.289
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)
Supplementary data


  Copyright IMPB RAS © 2005-2024