Medvedev A.E.
Construction of Complex Three-Dimensional Structures of the Aorta of a Particular Patient Using Finite Analytical Formulas
Mathematical Biology & Bioinformatics. 2022;17(2):312-324.
doi: 10.17537/2022.17.312.
References
- Chernyavskiy A.M., Lyashenko M.M., Tarkova A.R., Sirota D.A., Khvan D.S., Kretov E.I., Prokhorikhin A.A., Malaev D.U., Boykov A.A. Hybrid procedures for aortic arch disease. Pirogov Journal of Surgery. 2019(4):87–93 (in Russ.). doi: 10.17116/hirurgia201904187
- Sakalihasan N., Michel J-B., Katsargyris A., Kuivaniemi H., Defraigne J-O., Nchimi A., Powell J.T., Yoshimura K., Hultgren R. Abdominal aortic aneurysms. Nature Reviews Disease Primers. 2018;4(34):1–22. doi: 10.1038/s41572-018-0030-7
- Roy D., Kauffmann C., Delorme S., Lerouge S., Cloutier G., Soulez G. A literature review of the numerical analysis of abdominal aortic aneurysms treated with endovascular stent grafts. Computational and Mathematical Methods in Medicine. 2012;2012(820389):1–16. doi: 10.1155/2012/820389
- Computational Modeling and Simulation Examples in Bioengineering. 1st ed. Ed. Nenad Filipovic. Wiley, 2021. 384 p.
- Scotti C.M., Shkolnik A.D., Muluk S.C., Finol E.A. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. BioMedical Engineering Online. 2005;4(64):1–22. doi: 10.1186/1475-925X-4-64
- Skripachenko K.K., Golyadkina A.A., Morozov K.M., Chelnokova N.O., Ostrovsky N.V., Kirillova I.V., Kossovich L.Y. Biomechanical patient-oriented analysis of influence of the aneurysm on the hemodynamics of the thoracic aorta. Rossiiskii zhurnal biomekhaniki (Russian Journal of Biomechanics). 2019;23(4):526–536 (in Russ.). doi: 10.15593/RZhBiomeh/2019.4.03
- Doyle B.J., Callanan A. McGloughlin T.M. A comparison of modelling techniques for computing wall stress in abdominal aortic aneurysms. BioMedical Engineering Online. 2007;6(38):1–12. doi: 10.1186/1475-925X-6-38
- Sinitsyna D.E., Yuhnev A.D., Zaytsev D.K., Turkina M.V. The flow structure in a three-dimensional model of abdominal aortic bifurcation: ultrasonic and numerical study. St. Petersburg Polytechnic University Journal - Physics and Mathematics. 2019;12(4):50–60 (in Russ.). doi: 10.18721/JPM.12405
- Zhang Y., Bazilevs Y., Goswami S., Bajaj C.L., Hughes T.J.R. Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow. Computer Methods in Applied Mechanics and Engineering. 2007;196(29–30):2943–2959. doi: 10.1016/j.cma.2007.02.009
- Coda M. Advanced patient-specific modeling and analysis of complex aortic structures by means of Isogeometric Analysis: PhD Dissertation. Pavia: University of Pavia, 2019. 172 p.
- Rami Haj-Ali, Gil Marom, Zekry S.B., Rosenfeld M., Raanani E. A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling. Journal of Biomechanics. 2012;45(14):2392–2397. doi: 10.1016/j.jbiomech.2012.07.017
- De Hart J., Peters G.W.M., Schreurs P.J.G., Baaijens F.P.T. A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. Journal of Biomechanics. 2003;36(1):103–112. doi: 10.1016/S0021-9290(02)00244-0
- Rankin J.S., Bone M.C., Fries P.M., Aicher D., Schäfers H-J., Crooke P.S. A refined hemispheric model of normal human aortic valve and root geometry. Journal of Thoracic and Cardiovascular Surgery. 2013;146(1):103–108. doi: 10.1016/j.jtcvs.2012.06.043
- Jatene M.B., Monteiro R., Guimarães M.H., Veronezi S.C., Koike M.K., Jatene F.B., Jatene A.D. Aortic Valve assessment. Anatomical study of 100 healthy human hearts. Arquivos Brasileiros de Cardiologia. 1999;73(1):81–86. doi: 10.1590/S0066-782X1999000700007
- Cao K., Bukac M., Sucosky P. Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets. Computer Methods in Biomechanics and Biomedical Engineering. 2016;19(6):603–613. doi: 10.1080/10255842.2015.1052419
- Cao K., Sucosky P. Computational comparison of regional stress and deformation characteristics in tricuspid and bicuspid aortic valve leaflets. International Journal for Numerical Methods in Biomedical Engineering. 2017;33(3):1–21. doi: 10.1002/cnm.2798
- Wojciechowska D., Liberski A.R., Wilczek P., Butcher J., Scharfschwerdt M., Hijazi Z., Kasprzak J., Pibarot P., Bianco R. The optimal shape of an aortic heart valve replacement – on the road to the consensus. QScience Connect. 2017;2017(3):1–14. doi: 10.5339/connect.2017.1
- Thubrikar M. The aortic valve. Informa Healthcare, 2012. 232 p.
- Redaelli A., Di Martino E., Gamba A., Procopio A.M., Fumero R. Assessment of the influence of the compliant aortic root on aortic valve mechanics by means of a geometrical model. Medical Engineering and Physics. 1997;19(8):696–710. doi: 10.1016/S1350-4533(97)00033-7
- Kniazev D.N., Ustinova E.S. In: Tekhnicheskie nauki v Rossii i za rubezhom (Technical Sciences in Russia and Abroad): Proceedings of the IV Intern. scientific conf. Moscow, 2015. P. 122–125 (in Russ.).
- Medvedev A.E., Gafurova P.S. Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases. Mathematical Biology and Bioinformatics. 2019;14(S):t62–t75. doi: 10.17537/2019.14.t62
- Medvedev A.E. Method of Constructing an Asymmetric Human Bronchial Tree in Normal and Pathological Cases. Mathematical Biology and Bioinformatics. 2020;15(S):t21–t31. doi: 10.17537/2020.15.t21
|
|
|