Russian version English version
Volume 17   Issue 2   Year 2022
Medvedev A.E.

Construction of Complex Three-Dimensional Structures of the Aorta of a Particular Patient Using Finite Analytical Formulas

Mathematical Biology & Bioinformatics. 2022;17(2):312-324.

doi: 10.17537/2022.17.312.

References

  1. Chernyavskiy A.M., Lyashenko M.M., Tarkova A.R., Sirota D.A., Khvan D.S., Kretov E.I., Prokhorikhin A.A., Malaev D.U., Boykov A.A. Hybrid procedures for aortic arch disease. Pirogov Journal of Surgery. 2019(4):87–93 (in Russ.). doi: 10.17116/hirurgia201904187
  2. Sakalihasan N., Michel J-B., Katsargyris A., Kuivaniemi H., Defraigne J-O., Nchimi A., Powell J.T., Yoshimura K., Hultgren R. Abdominal aortic aneurysms. Nature Reviews Disease Primers. 2018;4(34):1–22. doi: 10.1038/s41572-018-0030-7
  3. Roy D., Kauffmann C., Delorme S., Lerouge S., Cloutier G., Soulez G. A literature review of the numerical analysis of abdominal aortic aneurysms treated with endovascular stent grafts. Computational and Mathematical Methods in Medicine. 2012;2012(820389):1–16. doi: 10.1155/2012/820389
  4. Computational Modeling and Simulation Examples in Bioengineering. 1st ed. Ed. Nenad Filipovic. Wiley, 2021. 384 p.
  5. Scotti C.M., Shkolnik A.D., Muluk S.C., Finol E.A. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. BioMedical Engineering Online. 2005;4(64):1–22. doi: 10.1186/1475-925X-4-64
  6. Skripachenko K.K., Golyadkina A.A., Morozov K.M., Chelnokova N.O., Ostrovsky N.V., Kirillova I.V., Kossovich L.Y. Biomechanical patient-oriented analysis of influence of the aneurysm on the hemodynamics of the thoracic aorta. Rossiiskii zhurnal biomekhaniki (Russian Journal of Biomechanics). 2019;23(4):526–536 (in Russ.). doi: 10.15593/RZhBiomeh/2019.4.03
  7. Doyle B.J., Callanan A. McGloughlin T.M. A comparison of modelling techniques for computing wall stress in abdominal aortic aneurysms. BioMedical Engineering Online. 2007;6(38):1–12. doi: 10.1186/1475-925X-6-38
  8. Sinitsyna D.E., Yuhnev A.D., Zaytsev D.K., Turkina M.V. The flow structure in a three-dimensional model of abdominal aortic bifurcation: ultrasonic and numerical study. St. Petersburg Polytechnic University Journal - Physics and Mathematics. 2019;12(4):50–60 (in Russ.). doi: 10.18721/JPM.12405
  9. Zhang Y., Bazilevs Y., Goswami S., Bajaj C.L., Hughes T.J.R. Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow. Computer Methods in Applied Mechanics and Engineering. 2007;196(29–30):2943–2959. doi: 10.1016/j.cma.2007.02.009
  10. Coda M. Advanced patient-specific modeling and analysis of complex aortic structures by means of Isogeometric Analysis: PhD Dissertation. Pavia: University of Pavia, 2019. 172 p.
  11. Rami Haj-Ali, Gil Marom, Zekry S.B., Rosenfeld M., Raanani E. A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling. Journal of Biomechanics. 2012;45(14):2392–2397. doi: 10.1016/j.jbiomech.2012.07.017
  12. De Hart J., Peters G.W.M., Schreurs P.J.G., Baaijens F.P.T. A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. Journal of Biomechanics. 2003;36(1):103–112. doi: 10.1016/S0021-9290(02)00244-0
  13. Rankin J.S., Bone M.C., Fries P.M., Aicher D., Schäfers H-J., Crooke P.S. A refined hemispheric model of normal human aortic valve and root geometry. Journal of Thoracic and Cardiovascular Surgery. 2013;146(1):103–108. doi: 10.1016/j.jtcvs.2012.06.043
  14. Jatene M.B., Monteiro R., Guimarães M.H., Veronezi S.C., Koike M.K., Jatene F.B., Jatene A.D. Aortic Valve assessment. Anatomical study of 100 healthy human hearts. Arquivos Brasileiros de Cardiologia. 1999;73(1):81–86. doi: 10.1590/S0066-782X1999000700007
  15. Cao K., Bukac M., Sucosky P. Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets. Computer Methods in Biomechanics and Biomedical Engineering. 2016;19(6):603–613. doi: 10.1080/10255842.2015.1052419
  16. Cao K., Sucosky P. Computational comparison of regional stress and deformation characteristics in tricuspid and bicuspid aortic valve leaflets. International Journal for Numerical Methods in Biomedical Engineering. 2017;33(3):1–21. doi: 10.1002/cnm.2798
  17. Wojciechowska D., Liberski A.R., Wilczek P., Butcher J., Scharfschwerdt M., Hijazi Z., Kasprzak J., Pibarot P., Bianco R. The optimal shape of an aortic heart valve replacement – on the road to the consensus. QScience Connect. 2017;2017(3):1–14. doi: 10.5339/connect.2017.1
  18. Thubrikar M. The aortic valve. Informa Healthcare, 2012. 232 p.
  19. Redaelli A., Di Martino E., Gamba A., Procopio A.M., Fumero R. Assessment of the influence of the compliant aortic root on aortic valve mechanics by means of a geometrical model. Medical Engineering and Physics. 1997;19(8):696–710. doi: 10.1016/S1350-4533(97)00033-7
  20. Kniazev D.N., Ustinova E.S. In: Tekhnicheskie nauki v Rossii i za rubezhom (Technical Sciences in Russia and Abroad): Proceedings of the IV Intern. scientific conf. Moscow, 2015. P. 122–125 (in Russ.).
  21. Medvedev A.E., Gafurova P.S. Analytical design of the human bronchial tree for healthy patients and patients with obstructive pulmonary diseases. Mathematical Biology and Bioinformatics. 2019;14(S):t62–t75. doi: 10.17537/2019.14.t62
  22. Medvedev A.E. Method of Constructing an Asymmetric Human Bronchial Tree in Normal and Pathological Cases. Mathematical Biology and Bioinformatics. 2020;15(S):t21–t31. doi: 10.17537/2020.15.t21
Table of Contents Original Article
Math. Biol. Bioinf.
2022;17(2):312-324
doi: 10.17537/2022.17.312
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References Translation into English
Math. Biol. Bioinf.
2022;17(S):t30-t41
doi: 10.17537/2022.17.t30

Full text (eng., pdf)

 

  Copyright IMPB RAS © 2005-2024