Russian version English version
Volume 17   Issue 2   Year 2022
Dmitriy Romanov1,2, Nikolai Skoblikow1,3,4

Linkage Disequilibrium in Targeted Sequencing

Mathematical Biology & Bioinformatics. 2022;17(2):325-337.

doi: 10.17537/2022.17.325.

References

  1. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Ren R., Leung K.S.M., Lau E.H.Y., Wong J.Y. et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020;382(13):1199-1207. doi: 10.1056/NEJMoa2001316
  2. Rahimi A., Mirzazadeh A., Tavakolpour S. Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection. Genomics. 2021;113(1):1221-1232. doi: 10.1016/j.ygeno.2020.09.059
  3. Moisova D.L., Gorodin V.N., Skoblikov N.E., Zotov S.V., Tikhonenko Y.V. Peculiarities of polymorphism of certain genes of the hemostasis system in patients with COVID-19. Bashkortostan Medical Journal. 2021;16(6):35-40 (in Russ.).
  4. Liao M., Liu Y., Yuan J., Wen Y., Xu G., Zhao J., Chen L., Li J., Wang X., Wang F. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nature Medicine. 2020;26(6):842-844 doi: 10.1038/s41591-020-0901-9
  5. Villapol S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Transl. Res. 2020;226:57-69. doi: 10.1016/j.trsl.2020.08.004
  6. Matzaraki V., Kumar V., Wijmenga C., Zhernakova A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biology. 2021;18(1):76. doi: 10.1186/s13059-017-1207-1
  7. Ellinghaus D., Degenhardt F., Bujanda L., Buti M., Albillos A., Invernizzi P., Fernández J., Prati D., Baselli G., Asselta R. et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N. Engl. J. Med. 2020;383(16):1522-1534. doi: 10.1056/NEJMoa2020283
  8. Zeberg H., Pääbo S. A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc. Natl. Acad. Sci. USA. 2021;118(9):e2026309118. doi: 10.1073/pnas.2026309118
  9. Zeberg H., Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature. 2020;587(7835):610-612. doi: 10.1038/s41586-020-2818-3
  10. Pairo-Castineira E., Clohisey S., Klaric L., Bretherick A.D., Rawlik K., Pasko D., Walker S., Parkinson N., Fourman M.H., Russell C.D. et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591(7848):92-98. doi: 10.1038/s41586-020-03065-y
  11. Kousathanas A., Pairo-Castineira E., Rawlik K., Stuckey A., Odhams C.A., Walker S., Russell C.D., Malinauskas T., Wu Y., Millar J. et al. Whole genome sequencing reveals host factors underlying critical COVID-19. Nature. 2022;607:97-103. doi: 10.1038/s41586-022-04576-6
  12. Niemi M.E.K., Karjalainen J., Liao R.G., Neale B.M., Daly M., Ganna A., Pathak G.A., Andrews S.J., Kanai M., Veerapen K. et al. Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472-477. doi: 10.1038/s41586-021-03767-x
  13. Mousa M., Vurivi H., Kannout H., Uddin M., Alkaabi N., Mahboub B., Tay G.K., Alsafar H.S. Genome-wide association study of hospitalized COVID-19 patients in the United Arab Emirates. EBioMedicine. 2021;74:103695. doi: 10.1016/j.ebiom.2021.103695
  14. Secolin R., de Araujo T.K., Gonsales M.C., Rocha C.S., Naslavsky M., Marco L., Bicalho M.A.C., Vazquez V.L., Zatz M., Silva W.A., Lopes-Cendes I. Genetic variability in COVID-19-related genes in the Brazilian population. Hum. Genome. Var. 2021;8:15. doi: 10.1038/s41439-021-00146-w
  15. Consortium International HapMap. A haplotype map of the human genome. Nature. 2005;437(7063):1299-1320. doi: 10.1038/nature04226
  16. Buchanan C.C., Torstenson E.S., Bush W.S., Ritchie M.D. A comparison of cataloged variation between International HapMap Consortium and 1000 Genomes Project data. J. Am. Med. Inform. Assoc. 2012;19(2):289-294. doi: 10.1136/amiajnl-2011-000652
  17. Justice C.M., Musolf A.M., Cuellar A., Lattanzi W., Simeonov E., Kaneva R., Paschall J., Cunningham M., Wilkie A.O.M., Wilson A.F. et al. Targeted Sequencing of Candidate Regions Associated with Sagittal and Metopic Nonsyndromic Craniosynostosis. Genes. 2022;13(5):816. doi: 10.3390/genes13050816
  18. Schaid D.J., Chen W., Larson N.B. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 2018;19(8):491-504. doi: 10.1038/s41576-018-0016-z
  19. Barrett J.C., Fry B., Maller J., Daly M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263-265. doi: 10.1093/bioinformatics/bth457
  20. Shin J.-H., Blay S., McNeney B., Graham J. LDheatmap: an R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. Journal of Statistical Software. 2006;16:1-9. doi: 10.18637/jss.v016.c03
  21. Dong S.S., He W.M., Ji J.J., Zhang C., Guo Y., Yang T.L. LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Brief. Bioinform. 2021;22(4):bbaa227. doi: 10.1093/bib/bbaa227
  22. Birney E., Andrews T.D., Bevan P., Caccamo M., Chen Y., Clarke L., Coates G., Cuff J., Curwen V., Cutts T. et al. An overview of Ensembl. Genome Research. 2004;14(5):925-928. doi: 10.1101/gr.1860604
  23. Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haussler D. The human genome browser at UCSC. Genome Research. 2002;12(6):996-1006. doi: 10.1101/gr.229102
  24. Kitamoto T., Kitamoto A., Yoneda M., Hyogo H., Ochi H., Mizusawa S., Ueno T., Nakao K., Sekine A., Chayama K. et al. Targeted next-generation sequencing and fine linkage disequilibrium mapping reveals association of PNPLA3 and PARVB with the severity of nonalcoholic fatty liver disease. J. Hum. Genet. 2014;59(5):241-246. doi: 10.1038/jhg.2014.17
  25. Bewicke-Copley F., Arjun Kumar E., Palladino G., Korfi K., Wang J. Applications and analysis of targeted genomic sequencing in cancer studies. Comput. Struct. Biotechnol. J. 2019;17:1348-1359. doi: 10.1016/j.csbj.2019.10.004
  26. Qin D. Next-generation sequencing and its clinical application. Cancer Biol. Med. 2019;16(1):4-10. doi: 10.20892/j.issn.2095-3941.2018.0055
  27. Luo Y., Kanai M., Choi W., Li X., Sakaue S., Yamamoto K., Ogawa K., Gutierrez-Arcelus M., Gregersen P.K., Stuart P.E. et al. A high-resolution HLA reference panel capturing global population diversity enables multi-ancestry fine-mapping in HIV host response. Nature Genetics. 2021;53(10):1504-1516. doi: 10.1038/s41588-021-00935-7
  28. Justice C.M., Kim J., Kim S.D., Kim K., Yagnik G., Cuellar A., Carrington B., Lu C.L., Sood R., Boyadjiev S.A., Wilson A.F. A variant associated with sagittal nonsyndromic craniosynostosis alters the regulatory function of a non-coding element. Am. J. Med. Genet. A. 2017;173(11):2893-2897. doi: 10.1002/ajmg.a.38392
  29. Justice C.M., Yagnik G., Kim Y., Peter I., Jabs E.W., Erazo M., Ye X., Ainehsazan E., Shi L., Cunningham M.L. et al. A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9. Nat. Genet. 2012;44(12):1360-1364. doi: 10.1038/ng.2463
  30. Byrska-Bishop M., Evani U.S., Zhao X., Basile A.O., Abel H.J., Regier A.A., Corvelo A., Clarke W.E., Musunuri R., Nagulapalli K. et al. High coverage whole genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios. Cell. 2022;185(18):3426-3440. doi: 10.1016/j.cell.2022.08.004
  31. Downes D.J., Cross A.R., Hua P., Roberts N., Schwessinger R., Cutler A.J., Munis A.M., Brown J., Mielczarek O., de Andrea C.E. et al. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nat. Genet. 2021;53(11):1606-1615. doi: 10.1038/s41588-021-00955-3
  32. Fink-Baldauf I.M., Stuart W.D., Brewington J.J., Guo M., Maeda Y. CRISPRi links COVID-19 GWAS loci to LZTFL1 and RAVER1. EBioMedicine. 2022;75:103806. doi: 10.1016/j.ebiom.2021.103806
  33. Kasela S., Daniloski Z., Bollepalli S., Jordan T.X., tenOever B.R., Sanjana N.E., Lappalainen T. Integrative approach identifies SLC6A20 and CXCR6 as putative causal genes for the COVID-19 GWAS signal in the 3p21.31 locus. Genome Biol. 2021;22(1):242. doi: 10.1186/s13059-021-02454-4
  34. Semiz S. SIT1 transporter as a potential novel target in treatment of COVID-19. Biomol. Concepts. 2021;12(1):156-163. doi: 10.1515/bmc-2021-0017
Table of Contents Original Article
Math. Biol. Bioinf.
2022;17(2):325-337
doi: 10.17537/2022.17.325
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024