Russian version English version
Volume 17   Issue 2   Year 2022
Abakumov A.I., Pak S.Ya.

Two Approaches to Modeling Phytoplankton Biomass Dynamics Based on the Droop Model

Mathematical Biology & Bioinformatics. 2022;17(2):401-422.

doi: 10.17537/2022.17.401.

References

  1. Finenko Z.Z., Suslin V.V., Churilova T.Ya. The Regional Model to Calculate the Black Sea Primary Production Using Satellite Color Scanner Seawifs. Marine Biological Journal. 2009;8(1):81–106 (in Russ.).
  2. Rubin A.B., Krendeleva T.E. Uspekhi biologicheskoi khimii (Advances in Biological Chemistry). 2003;43(1):225–266 (in Russ.).
  3. Belianin V.N., Sid'ko F.Ia., Trenkenshu A.P. Energetika fotosinteziruiushchei kul'tury mikrovodoroslei (Energy of photosynthetic microalgae culture). 1980 (in Russ.).
  4. Nikolaou A., Hartmann P., Sciandra A., Chachuat B., Bernard O. Dynamic coupling of photoacclimation and photoinhibition in a model of microalgae growth. J. Theoret. Biology. 2016;390:61–72. doi: 10.1016/j.jtbi.2015.11.004
  5. Mineeva N.M., Shchur L.A. Issues of modern algology. 2012;22(4):441–456 (in Russ.).
  6. Nicholls K.H., Dillon P.J. An Evaluation of Phosphorus‐Chlorophyll‐Phytoplankton Relationships for Lakes. Int. Rev. ges. Hydrobiol. Hydrogr. 1978;63(2):141–154. doi: 10.1002/iroh.19780630203
  7. Sidelev S.I., Babanazarova O.V. The Link Analysis of the Pigmentary and Structural Characteristics of the High-Eutrophic Lake Phytoplankton. Journal of Siberian Federal University. Biology. 2008;1(2):162–177 (in Russ.). doi: 10.17516/1997-1389-0275
  8. Eilers P.H.C., Peeters J.C.H. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. J. Ecol. Model. 1988;42(3–4):199–215. doi: 10.1016/0304-3800(88)90057-9
  9. Kuznetsova A.V., Pogosyan S.I. Voronova E.N., Konyukhov I.V., Rubin A.B. Nitrogen deficit impact on growth and condition of photosynthetic apparatus of green algae Chlamydomonas reinhardtii. Đhlamydomonas reinhardtii. Voda: khimiia i ekologiia (Water: chemistry and ecology). 2012;4:68–76 (in Russ.).
  10. Imamura H., Huynh Nhat K.P., Togawa H., Saito K., Iino R., Kato-Yamada Y., Nagai T., Noji H. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proceedings of the National Academy of Sciences. 2009;106(37):15651–15656. doi: 10.1073/pnas.0904764106
  11. Platt T., Caverhill C., Sathyendranath S. Basin‐scale estimates of oceanic primary production by remote sensing: The North Atlantic. Journal of Geophysical Research: Oceans. 1991;96(C8):15147–15159. doi: 10.1029/91JC01118
  12. Hunter B.L., Laws E.A. ATP and chlorophyll a as estimators of phytoplankton carbon biomass. Limnology and Oceanography. 1981;26(5):944–956. doi: 10.4319/lo.1981.26.5.0944
  13. Mairet F., Bernard O., Lacour T., Sciandra A. Modelling microalgae growth in nitrogen limited photobiorector for estimating biomass, carbohydrate and neutral lipid productivities. J. IFAC Proceedings. 2011;44(1):10591–10596. doi: 10.3182/20110828-6-IT-1002.03165
  14. Bernard O. Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. J. of Process Control. 2011;21:1378–1389. doi: 10.1016/j.jprocont.2011.07.012
  15. Droop M.R. Some thoughts on nutrient limitation in algae. J. Phycol. 1973;9:264–272. doi: 10.1111/j.0022-3646.1973.00264.x
  16. Abakumov A.I., Pak S.Ya. Modeling of Photosynthesis Process and Assessing Of Phytoplankton Dynamics Based On Droop Model. Mathematical Biology and Bioinformatics. 2021;16(2):380–393. doi: 10.17537/2021.16.380
  17. Monod J. The growth of bacterial cultures. Annu. Rev. Microbiol. 1949. V.111(2):371–394. doi: 10.1146/annurev.mi.03.100149.002103
  18. Droop M.R. The nutrient status of algal cells in continuous culture. J. Mar. Biol. Assoc. U. K. 1974;54:825–855. doi: 10.1017/S002531540005760X
  19. Guzmán-Palomino A., Aguilera-Vázquez L., Hernández-Escoto H., García-Vite P.M. Sensitivity, Equilibria, and Lyapunov Stability Analysis in Droop’s Nonlinear Differential Equation System for Batch Operation Mode of Microalgae Culture Systems. Mathematics. 2021;9(18):2192. doi: 10.3390/math9182192
  20. Han B.P. A mechanistic model of algal photoinhibition induced by photodamage to photosystem-II. Journal of Theoret. Biology. 2002;214(4):519–527. doi: 10.1006/jtbi.2001.2468
  21. Tett P., Cottrell J.C., Trew D.O., Wood B.J.B. Phosphorus quota and the chlorophyll: carbon ratio in marine phytoplankton. Limnology and Oceanography. 1975;20(4):587–603. doi: 10.4319/lo.1975.20.4.0587
  22. Silkin V.A., Abakumov A.I., Pautova L.A., Pakhomova S.V., Lifanchuk A.V. Mechanisms of regulation of invasive processes in phytoplankton on the example of the north-eastern part of the Black Sea. Aquatic Ecology. 2016;50(2):221–234. doi: 10.1007/s10452-016-9570-7
  23. Lutsenko N.G. Nachala biokhimii: Kurs lektsii/RKhTU im. Mendeleeva (Beginnings of biochemistry: Course of lectures/RKhTU im. Mendeleev). Moscow, 2002. 125 p. (in Russ.).
  24. Gonchenko A. S., Gonchenko S. V., Kazakov A. O., Kozlov A. D. Mathematical theory of dynamical chaos and its applications: review part 1. Pseudohyperbolic attractors. Izvestiya VUZ. Applied Nonlonear Dynamics. 2017;25(2):4–36.
  25. Aleksanin A.I., Kachur V.A., Specificity of atmospheric correction of satellite data on ocean color in the Far East. Izv. Atmos. Ocean. Phys. 2017;53(9):996–1006. doi: 10.1134/S0001433817090031
  26. Yang C., Hua Q., Shimizu K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem. Eng. J. 2000;6(2):87–102. doi: 10.1016/S1369-703X(00)00080-2
  27. Mock T., Junge K. Psychrophilic diatoms: mechanisms for survival in freeze-thaw cycles. In: Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology. Ed. Seckbach J. 2007. P. 343–364. doi: 10.1007/978-1-4020-6112-7
  28. Lepskaya ┼.V., Kolomeytsev V.V., Tepnin ╬.B., Koval M.V. The Midsummer Phytoplankton on the South-West Coast of Kamchatka in 2007. The researches of the aquatic biological resources of Kamchatka and the North-West Part of the Pacific Ocean. 2009;15:21–33 (in Russ.).
  29. Carmeli C., Avron M. A Light‐Triggered Adenosine Triphosphate‐Phosphate Exchange Reaction in Chloroplasts. European Journal of Biochemistry. 1967;2(3):318–326. doi: 10.1111/j.1432-1033.1967.tb00141.x
  30. Biochemistry and molecular biology of plants. Eds. Buchanan B.B., Gruissem W., Jones R.L. John Wiley & Sons, 2015.
  31. Reynolds C. Ecology, biodiversity and conservation. Ecology of Phytoplankton. 2006;1. doi: 10.1017/CBO9780511542145
  32. Guo S., Zhao Z., Liang J., Du J., Sun X. Carbon biomass, carbon-to-chlorophyll a ratio and the growth rate of phytoplankton in Jiaozhou Bay, China. J. Ocean. Limnol. 2021;39(4):1328–1342. doi: 10.1007/s00343-020-0234-z
  33. Zonneveld C. A cell-based model for the chlorophyll a to carbon ratio in phytoplankton. J. Ecol. Model. 1998;113(1–3):55–70. doi: 10.1016/S0304-3800(98)00134-3
  34. Holm‐Hansen O., Booth C.R. The measurement of adenosine triphosphate in the ocean and its ecological significance 1. Limnology and Oceanography. 1966;11(4):510–519. doi: 10.4319/lo.1966.11.4.0510
  35. Sinclair M., Keighan E., Jones J. ATP as a measure of living phytoplankton carbon in estuaries. Journal of the Fisheries Board of Canada. 1979;36(2):180–186. doi: 10.1139/f79-028
  36. Adamson H.Y., Hiller R.G., Vesk M. Chloroplast development and the synthesis of chlorophyll a and b and chlorophyll protein complexes I and II in the dark in Tradescantia albiflora (Kunth). Planta. 1980;150(4):269–274. doi: 10.1007/BF00384654
  37. Trofimova V.V., Makarevich P.R. Daily Dynamics of Chlorophyll a in the Estuarine Pelagic Phytocenosis of the Kola Inlet (Barents Sea). Algologia. 2009;19(2):145–154.
  38. Martinez E., Antoine D., d'Ortenzio F., de Boyer Montégut, C. Phytoplankton spring and fall blooms in the North Atlantic in the 1980s and 2000s. Journal of Geophysical Research: Oceans. 2011;116:11. doi: 10.1029/2010JC006836
  39. Colebrook J.M. Continuous plankton records: seasonal cycles of phytoplankton and copepods in the North Atlantic Ocean and the North Sea. Marine Biology. 1979;51(1):23–32. doi: 10.1007/BF00389027
  40. Izmeneniia v prirodnykh biologicheskikh sistemakh (Changes in natural biological systems). Ed. Maksimova V.N. Moscow, 2004. 368 p. (in Russ.).
  41. Pak S.Y., Abakumov A.I. Phytoplankton in the Sea of Okhotsk along Western Kamchatka: warm vs cold years. J. Ecol. Model. 2020;433:109244. doi: 10.1016/j.ecolmodel.2020.109244
  42. Abakumov A.I., Izrailsky Y.G. Model method of vertical chlorophyll concentration reconstruction from satellite data. Computer Research and Modeling. 2013;5(3):473–482. doi: 10.20537/2076-7633-2013-5-3-473-482
Table of Contents Original Article
Math. Biol. Bioinf.
2022;17(2):401-422
doi: 10.17537/2022.17.401
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024