Russian version English version
Volume 18   Issue 1   Year 2023
Andrianov A.M.1, Furs K.V.2, Gonchar A.V.2, Aslanyan L.H.3, Tuzikov A.V.2

Application of Virtual Screening and Molecular Modeling Technologies to Identify Potential SARS-CoV-2 Main Protease Inhibitors

Mathematical Biology & Bioinformatics. 2023;18(1):15-32.

doi: 10.17537/2023.18.15.


  1. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–574. doi: 10.1016/S0140-6736(20)30251-8
  2. Chan J.F.-W., Yuan S., Kok K.-H., To K. K.-W., Chu H., Yang J., Xing F., Liu J., Yip C. C.-Y., Poon R. W.-S., et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514–523. doi: 10.1016/S0140-6736(20)30154-9
  3. Yan F., Gao F. An overview of potential inhibitors targeting non-structural proteins 3 (PLpro and Mac1) and 5 (3CLpro/Mpro) of SARS-CoV-2. Comput. Struct. Biotechnol. J. 2021;19:4868–4883. doi: 10.1016/j.csbj.2021.08.036
  4. Ullrich S., Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett. 2020;30. Article No. 127377. doi: 10.1016/j.bmcl.2020.127377
  5. Katre S.G., Asnani A.J., Pratyush K., Sakharkar N.G., Bhope A.G., Sawarkar K.T., Nimbekar V.S. Review on development of potential inhibitors of SARS-CoV-2 main protease (MPro). Futur. J. Pharm. Sci. 2022;8. Article No. 36. doi: 10.1186/s43094-022-00423-7
  6. Xia S., Chan J. F.-W., Wang L, Jiao F., Chik K. K.-H., Chu H., Lan Q., Xu W., Wang Q., Wang C., Yuen K-Y., Lu L., Jiang S. Peptide-based pan-CoV fusion inhibitors maintain high potency against SARS-CoV-2 Omicron variant. Cell Res. 2022;32:404–406. doi: 10.1038/s41422-022-00617-x
  7. Xia S., Liu M., Wang C., Xu W., Lan Q., Feng S., Qi F., Bao L., Du L., Liu S., Qin C., Sun F., Shi Z., Zhu Y., Jiang S., Lu L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020;30:343–355. doi: 10.1038/s41422-020-0305-x
  8. Tao K., Tzou P.L., Nouhin J., Bonilla H., Jagannathan P., Shafer R.W. SARS-CoV-2 antiviral therapy. Clin. Microbiol. Rev. 2022;34(4). Article No. e0010921. doi: 10.1128/CMR.00109-21
  9. Niknam Z., Jafari A., Golchin A., Pouya F.D., Nemati M., Rezaei-Tavirani M., Rasmi Y. Potential therapeutic options for COVID-19: an update on current evidence. Eur. J. Med. Res. 2022;27. Article No. 6. doi: 10.1186/s40001-021-00626-3
  10. Zhang Y., Ye T., Xi H., Juhas M., Li J. Deep learning driven drug discovery: Tackling Severe Acute Respiratory Syndrome Coronavirus 2. Front. Microbiol. 2021. doi: 10.3389/fmicb.2021.739684
  11. Pillaiyar T., Manickam M., Namasivayam V.M., Hayashi Y., Jung S. H. An overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J. Med. Chem. 2016;59:6595–6628. doi: 10.1021/acs.jmedchem.5b01461
  12. Chen Y., Liu Q., Guo D. Coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol. 2020;92(4):418–423. doi: 10.1002/jmv.25681
  13. Colson P., Rolain J.M., Lagier J.C., Brouqui P., Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob Agents. 2020;55(4). Article No. 105932. doi: 10.1016/j.ijantimicag.2020.105932
  14. Dong L.Y., Hu S.S., Gao J.J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). DD & T. 2020;1:58–60. doi: 10.5582/ddt.2020.01012
  15. Balakrishnan V., Lakshminarayanan K. Screening of FDA Approved Drugs Against SARS-CoV-2 Main Protease: Coronavirus Disease. Int. J. Pept. Res. Ther. 2021;27(1):651–658. doi: 10.1007/s10989-020-10115-6
  16. Pendyala B., Patras A. In silico screening of food bioactive compounds to predict potential inhibitors of COVID-19 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). ChemRxiv. 2022. doi: 10.26434/chemrxiv.12051927.v2
  17. Owen D.R., Allerton C.M., Anderson A.S., Aschenbrenner L., Avery M., Berritt S., Boras B., Cardin R.D., Carlo A., Coffman K.J. et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science. 2021;374(6575):1586–1593. doi: 10.1126/science.abl4784
  18. U.S. Food and Drug Administration. (accessed 10.02.2023).
  19. Shuldau N.A., Yushkevich A.M., Furs K.V., Tuzikov A.V., Andrianov A.M. Development of a Deep Learning Generative Neural Network for Computer-Aided Design of Potential SARS-Cov-2 Inhibitors. Mathematical Biology and Bioinformatics. 2022;17(2):188–207. doi: 10.17537/2022.17.188
  20. Dalby A., Nourse J.G., Hounshell W.D., Gushurst A.K.I., Grier D.L., Leland B.A, Laufer J. Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. J. Chem. Inf. Comp. Sc. 1992;32(3):244–255. doi: 10.1021/ci00007a012
  21. Wishart D.S., Feunang Y.D., Guo A.C., Lo E.J., Marcu A., Grant J.R., Sajed T., Johnson D., Li C., Sayeeda Z. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucl. Acids Res. 2017;46:D1074–D1082. doi: 10.1093/nar/gkx1037
  22. Sterling T., Irwin J.J. ZINC 15 – Ligand discovery for everyone. J. Chem. Inf. Model. 2015;55(11):2324–2337. doi: 10.1021/acs.jcim.5b00559
  23. Trott O., Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comp. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334
  24. Wójcikowski M., Ballester P., Siedlecki P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci. Rep. 2017;7. Article No. 46710. doi: 10.1038/srep46710
  25. Durrant J.D., McCammon J.A. NNScore 2.0: A neural-network receptor–ligand scoring function. J. Chem. Inf. Model. 2011;51(11):2897–2903. doi: 10.1021/ci2003889
  26. Palacio-Rodríguez K., Lans I., Cavasotto C.N., Cossio P. Exponential consensus ranking improves the outcome in docking and receptor ensemble docking. Sci. Rep. 2019;9(1). Article No. 5142. doi: 10.1038/s41598-019-41594-3
  27. Case D.A., Ben-Shalom I.Y., Brozell S.R., Cerutti D.S., Cheatham T.E., III, Cruzeiro V.W.D., Darden T.A., Duke R.E., Ghoreishi D., Gilson M.K. et al. AMBER 2018. University of California, 2018.
  28. Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79(2):926–935. doi: 10.1063/1.445869
  29. Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23(3):327–341. doi: 10.1016/0021-9991(77)90098-5
  30. Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117
  31. Durrant J.D., McCammon, J.A. BINANA: A novel algorithm for ligand-binding characterization. J. Mol. Graph. Model. 2011;29(6):888–893. doi: 10.1016/j.jmgm.2011.01.004
  32. Genheden S., Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinity. Expert Opin. Drug Discov. 2015;10(5):449–461. doi: 10.1517/17460441.2015.1032936
  33. Zhang C.H., Stone E.A., Deshmukh M., Ippolito J.A., Ghahremanpour M.M., Tirado-Rives J., Spasov K.A., Zhang S., Takeo Y., Kudalkar S.N. et al. Potent noncovalent inhibitors of the Main Protease of SARS-CoV-2 from molecular sculpting of the drug perampanel guided by free energy perturbation calculations. ACS Cent Sci. 2021;7(3):467–475. doi: 10.1021/acscentsci.1c00039
  34. Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001;46:3–26.
  35. Qamar M.T., Alqahtani S.M., Alamri M.A., Chen L.-L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal. 2020;10(4):313–319. doi: 10.1016/j.jpha.2020.03.009
  36. Daina A., Michielin O., Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7. Article No. 42717. doi: 10.1038/srep42717
  37. Shen C., Hu Y., Wang Z., Zhong H., Zhang H., Zhong H., Wang G., Yao X., Xu L., Cao D., Hou T. Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions. Brief. Bioinf. 2021;22(1):497–514. doi: 10.1093/bib/bbz173
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2023.18.15
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024