Russian version English version
Volume 18   Issue 1   Year 2023
Voropaeva O.F.1, Tsgoev Ch.A.1,2

Numerical Modelling of Myocardial Infarction. I. Analysis of Spatiotemporal Aspects of the Local Inflammatory Response

Mathematical Biology & Bioinformatics. 2023;18(1):49-71.

doi: 10.17537/2023.18.49.


  1. Thygesen K., Alpert J.S., Jaffe A.S., Chaitman B.R., Bax J.J., Morrow D.A., White H.D. et al. Fourth universal definition of myocardial infarction. Circulation. 2018;138(20):e618–e651. doi: 10.1161/CIR.0000000000000617
  2. Chen J., Ceholski D.K., Liang L., Fish K., Hajjar R.J. Variability in coronary artery anatomy affects consistency of cardiac damage after myocardial infarction in mice. Am. J. Physiol. Heart Circ. Physiol. 2017;313:H275–H282. doi: 10.1152/ajpheart.00127.2017
  3. Martin T.P., MacDonald E.A., Elbassioni A.A.M., O'Toole D., Zaeri A. A.I., Nicklin S.A., Gray G.A., Loughrey C.M. Preclinical models of myocardial infarction: from mechanism to translation. British J. Pharmacol. 2022;179:770–791. doi: 10.1111/bph.15595
  4. Lindsey M.L., Bolli R., Canty J.M. Jr., Du X.J., Frangogiannis N.G., Frantz S.,Gourdie R.G., Holmes J.W., Jones S.P., Kloner R.A., Lefer D.J., Liao R., Murphy E., Ping P., Przyklenk K., Recchia F.A., Schwartz Longacre L., Ripplinger C.M., VanEyk J.E., Heusch G. Guidelines for experimental models of myocardial ischemia and infarction. Am. J. Physiol. Heart Circ. Physiol. 2018;314:H812–H838. doi: 10.1152/ajpheart.00335.2017
  5. Kolesova H., Bartos M., Hsieh W.C., Olejnickova V., Sedmera D. Novel approaches to study coronary vasculature development in mice. Developmental Dynamics. 2018;247:1018–1027. doi: 10.1002/dvdy.24637
  6. Saxena A., Russo I., Frangogiannis N.G. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Translat. Res. 2016;167(1):152–166. doi: 10.1016/j.trsl.2015.07.002
  7. Entman M.L., Youker K., Shoji T., Kukielka G., Shappell S.B., Taylor A.A., Smith C.W. Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence. J. Clin. Invest. 1992;90:1335–1345. doi: 10.1172/JCI115999
  8. Nepomniashchikh L.M., Lushnikova E.L., Semenov D.E. Regenerativno-plasticheskaia nedostatochnost' serdtsa: Morfologicheskie osnovy i molekuliarnye mekhanizmy (Regenerative plastic heart failure: Morphological bases and molecular mechanisms). Moscow; 2003 (in Russ.).
  9. Simakov S.S. Modern methods of mathematical modeling of blood flow using reduced order methods. Computer Research and Modeling. 2018;10(5):581–604 (in Russ.). doi: 10.20537/2076-7633-2018-10-5-581-604
  10. Tsgoev C.A., Voropaeva O.F., Shokin Yu.I. Mathematical modelling of acute phase of myocardial infarction. Russ. J. Numer. Anal. Math. Modelling. 2020;35(2):111–126. doi: 10.1515/rnam-2020-0009
  11. Voropaeva O. F., Tsgoev C. A. A numerical model of inflammation dynamics in the core of myocardial infarction. Journal of Applied and Industrial Mathematics. 2019;13(2):372–383. doi: 10.1134/S1990478919020182
  12. Jin Y.-F., Han H.-C., Berger J., Dai Q., Lindsey M.L. Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling. BMC Systems Biology. 2011;5. Article No. 60. doi: 10.1186/1752-0509-5-60
  13. Wang Y., Yang T., Ma Y., Halade G.V., Zhang J., Lindsey M.L., Jin Y.-F. Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction. BMC Genomics. 2012;13. doi: 10.1186/1471-2164-13-S6-S21
  14. Voropaeva O.F., Tsgoev Ch.A., Shokin Yu.I. Numerical Simulation Inflammatory Phase of Myocardial Infarction. Journal of Applied Mechanics and Technical Physics. 2021;62(3):105–117 (in Russ.). doi: 10.15372/PMTF20210310
  15. Moise N., Friedman A.A. Mathematical model of immunomodulatory treatment in myocardial infarction. J. Theoretical Biology. 2022;544:111–122. doi: 10.1016/j.jtbi.2022.111122
  16. Anderson R.H., Ho S.Y., Redmann K., Sanchez-Quintana D., Lunkenheimer P.P. The anatomical arrangement of the myocardial cells making up the ventricular mass. European Journal of Cardio-thoracic Surgery. 2005;28:517–525. doi: 10.1016/j.ejcts.2005.06.043
  17. Gouda Z.A., Elewa Y.H. A., Selim A.O. Histological architecture of cardiac myofibers composing the left ventricle of murine heart. Journal of Histology & Histopathology. 2015;2. Article No. 2. doi: 10.7243/2055-091X-2-2
  18. Lin P.-C., Kreutzer U., Jue T. Anisotropy and temperature dependence of myoglobin translational diffusion in myocardium: implication for oxygen transport and cellular architecture. Biophysical Journal. 2007;92:2608–2620. doi: 10.1529/biophysj.106.094458
  19. Strijkers G.J., Bouts A., Blankesteijn W.M., Peeters T.H., Vilanova A., van Prooijen M.C., Sanders H.M., Heijman E., Nicolay K. Diffusion tensor imaging of left ventricular remodeling in response to myocardial infarction in the mouse. NMR in Biomedicine. 2009;22:182–190. doi: 10.1002/nbm.1299
  20. Saxena A., Bujak M., Frunza O., Dobaczewski M., Gonzalez-Quesada C., Lu B., Gerard C., Frangogiannis N.G. CXCR3-independent actions of the CXC chemokine CXCL10 in the infarcted myocardium and in isolated cardiac fibroblasts are mediated through proteoglycans. Cardiovascular Research. 2014;103:217–227. doi: 10.1093/cvr/cvu138
  21. Bujak M., Dobaczewski M., Chatila K., Mendoza L.H., Li N., Reddy A., Frangogiannis N.G. Interleukin-1 Receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am. J. Pathol. 2008;173:57–67. doi: 10.2353/ajpath.2008.070974
  22. Zuylen V.-L., Haan M., Roelofs H., Fibbe W.E., Schalij M.J., Atsma D.E. Myocardial infarction models in NOD/Scid mice for cell therapy research: permanent ischemia vs ischemia-reperfusion. SpringerPlus. 2015;4. Article No. 336. doi: 10.1186/s40064-015-1128-y
  23. Hsu E.W., Xue R., Holmes A., Forder J.R. Delayed reduction of tissue water diffusion after myocardial ischemia. Am. J. Physiol. 1998;275:H697–H702. doi: 10.1152/ajpheart.1998.275.2.H697
  24. Beyhoff N., Lohr D., Foryst-Ludwig A., Klopfleisch R., Brix S., Grune J., Thiele A., Erfinanda L., Tabuchi A., Kuebler W.M., Pieske B., Schreiber L.M., Kintscher U. Characterization of myocardial microstructure and function in an experimental model of isolatedsubendocardial damage. Hypertension. 2019;74:295–304. doi: 10.1161/HYPERTENSIONAHA.119.12956
  25. Yanenko N.N. The Method of Fractional Steps, the Solution of Problems of Mathematical Physics in Several Variables. Springer-Verlag, Berlin, 1971.
  26. Kolmogorov A.N., Petrovskii I.G. Biul. MGU., ser. Matematika i mekhanika (Bull. Moscow State University, ser. Mathematics and mechanics). 1937;1:1–26 (in Russ.).
  27. Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P. Blow-up in Quasilinear Parabolic Equations. Berlin, NY: Walter de Gruyter; 1995. (De Gruyter Expositions in Mathematics, V. 19). doi: 10.1515/9783110889864
  28. Turing A.M. The chemical basis of morphogenesis. Phyl. Trans. Roy. Soc. 1952;237:37–72. doi: 10.1098/rstb.1952.0012
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2023.18.49
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-