Russian version English version
Volume 18   Issue 1   Year 2023
Shuai Y.1, Maslovskaya A.G.1, Kuttler C.2

Modeling of Bacterial Communication in the Extended Range of Population Dynamics

Mathematical Biology & Bioinformatics. 2023;18(1):89-104.

doi: 10.17537/2023.18.89.

References

  1. Whitehead N.A., Barnard A.M.L., Slater H., Simpson N.J.L., Salmond G.P.C. Quorum sensing in Gram-negative bacteria. FEMS Microbiol. Rev. 2001;25:365–404. doi: 10.1111/j.1574-6976.2001.tb00583.x
  2. Williams P., Winzer K., Chan W.C., Camara M. Look who's talking: communication and quorum sensing in the bacterial world. Phil. Trans. R. Soc. B. 2007;362:1119–1134. doi: 10.1098/rstb.2007.2039
  3. Rutherford S.T., Bassler B.L. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2012;2:a012427. doi: 10.1101/cshperspect.a012427
  4. Fernandez M., Porcel M., de la Torre J., Molina-Henares M.A. Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains. Frontiers in Microbiology. 2015;6(11):871. doi: 10.3389/fmicb.2015.00871
  5. James S., Nilsson P., James G., Kjelleberg S., Fagerström T. Luminescence control in the marine bacterium Vibrio fischeri: an analysis of the dynamics of lux regulation. J. Mol. Biol. 2000;296(4):1127–1137. doi: 10.1006/jmbi.1999.3484
  6. Kuttler C., Hense B.A. The interplay of two quorum sensing regulation systems of Vibrio fischeri. J. Theor. Biol. 2008;251(1):167–180. doi: 10.1016/j.jtbi.2007.11.015
  7. Anguige K., King J.R., Ward J.P., Williams P. Mathematical modelling of therapies targeted at bacterial quorum sensing. Math. Biosci. 2004;192(1):39–83. doi: 10.1016/j.mbs.2004.06.008
  8. Perez-Velazquez J., Gölgeli M., Garcia-Contreras R. Mathematical modelling of bacterial quorum sensing: a review. Bull. Math. Biol. 2016;76:1585–1639. doi: 10.1007/s11538-016-0160-6
  9. Karlsson D., Karlsson S., Gustafsson E., Normark B.H., Nilsson P. Modeling the regulation of the competence-evoking quorum sensing network in Streptococcus pneumoniae. BioSystems. 2007;90(1):211–223. doi: 10.1016/j.biosystems.2006.08.005
  10. Li J., Wang L., Hashimoto Y., Tsao C.Y., Wood T.K., Valdes J.J., Zafiriou E., Bentley W.E. A stochastic model of Escherichia coli ai-2 quorum signal circuit reveals alternative synthesis pathways. Mol. Syst. Biol. 2006;2:67–78. doi: 10.1038/msb4100107
  11. Chopp D.L., Chopp D.L., Kirisits M.J., Moran B., Parsek M.R. The dependence of quorum sensing on the depth of a growing biofilm. Bull. Math. Biol. 2003;65(6):1053–1079. doi: 10.1016/S0092-8240(03)00057-0
  12. Dockery J.D., Keener J.P. A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull. Math. Biol. 2000;63(1):95–116. doi: 10.1006/bulm.2000.0205
  13. Ward J.P., King J.R., Koerber A.J., Williams P., Croft J. M., Sockett R.E. Mathematical modelling of quorum sensing in bacteria. IMA J. Math. Appl. Med. Biol. 2001;18(3):263–292.
  14. Müller J., Kuttler C., Hense B.A., Rothballer M., Hartmann A. Cell-cell communication by quorum sensing and dimension-reduction J. Math. Biol. 2006;53:672–702. doi: 10.1007/s00285-006-0024-z
  15. Goryachev A.B. Understanding bacterial cell-cell communication with computational modelling. Chem. Rev. 2011;111(1):238–250. doi: 10.1021/cr100286z
  16. Hense B.A., Schuster M. Core principles of bacterial autoinducer systems. Microbiol. Mol. Biol. Rev. 2015;79(1):153–169. doi: 10.1128/MMBR.00024-14
  17. Barbarossa M.V., Kuttler C., Fekete A., Rothballer M. A delay model for quorum sensing of Pseudomonas putida. Biosystems. 2010;102(23):148–156. doi: 10.1016/j.biosystems.2010.09.001
  18. Fekete A., Kuttler C., Rothaller M., Hense B.A., Fischer D., Buddrus-Schiemann K., Lucio M., Müller J., Schmitt-Kopplin P., Hartmann A. Dynamic regulation of N-acyl-homoserine lactone production and degradation in Pseudomonas putida IsoF. FEMS Microbiol. Ecol. 2010;72:22–34. doi: 10.1111/j.1574-6941.2009.00828.x
  19. Alpkvist E., Picioreanu C., van Loosdrecht M.C.M., Heyden A. Three-dimensional biofilm model with individual cells and continuum EPS matrix. Biotechnol. Bioeng. 2001;94:961–979. doi: 10.1002/bit.20917
  20. Picioreanu Ρ., Kreft J.U., van Loosdrecht M.C.M. Particle-based multidimensional multispecies biofilm model. Applied and Environmental Microbiology. 2004;70(5):3024–3064. doi: 10.1128/AEM.70.5.3024-3040.2004
  21. Rodriguez D., Carpio A., Einarsson B. A cellular automata model for biofilm growth. 10th World Congress on Computational Mechanics. Blucher Mechanical Engineering Proceedings. 2014;1:409–421. doi: 10.5151/meceng-wccm2012-16793
  22. Chopp D.L., Kirisits M.J., Moran B., Parsek M.R. The dependence of quorum sensing on the depth of a growing biofilm. Bull. Math. Biol. 2002;65:1053–1079. doi: 10.1016/S0092-8240(03)00057-0
  23. Ward J.P., King J.R., Koerber A.J., Croft J.M., Sockett R.E., Williams P. Early development and quorum sensing in bacterial biofilms. J. Math. Biol. 2003;47:23–55. doi: 10.1007/s00285-002-0190-6
  24. Frederick M.R., Kuttler C., Hense B.A., Eberl H.J. A mathematical model of quorum sensing regulated eps production in biofilm communities. Theor. Biol. Med. Model. 2011;8:8. doi: 10.1186/1742-4682-8-8
  25. Ward J. Mathematical modeling of quorum-sensing control in biofilms. In: Control of biofilm infections by signal manipulation. Ed. Balaban N. Berlin: Springer, 2008. P. 79–108. (Springer Series on Biofilms, V. 2). doi: 10.1007/7142_2007_010
  26. Kuttler Ch. Chapter 4-Reaction-diffusion equations and their application on bacterial communication. Handbook of Statistics. 2017;37:55–91. doi: 10.1016/bs.host.2017.07.003
  27. Kuttler Ch., Maslovskaya A. Computer simulation of communication in bacterial populations under external impact of signal-degrading enzymes. Proc. of the CEUR “Workshop Proceedings”. 2020;2783:163–179.
  28. Maslovskaya A., Kuttler C., Chebotarev A., Kovtanyuk A. Optimal multiplicative control of bacterial quorum sensing under external enzyme impact. Math. Model. Nat. Phenom. 2022;17(29). doi: 10.1051/mmnp/2022031
  29. Kuttler C., Maslovskaya A. Hybrid stochastic fractional-based approach to modeling bacterial quorum sensing. Applied Mathematical Modelling. 2021;93:360–375. doi: 10.1016/j.apm.2020.12.019
  30. Kuttler C., Maslovskaya A. Computer-assisted modeling of quorum sensing in bacterial population exposed to antibiotics. Front. Appl. Math. Stat. 2022;8:951783. doi: 10.3389/fams.2022.951783
  31. Llorens J.M.N., Tormo A., Martinez-Garcia E. Stationary phase in gram-negative bacteria. FEMS Microbiol. Rev. 2010:476–495. doi: 10.1111/j.1574-6976.2010.00213.x
  32. Munna M.S., Zeba Z., Noor R. Influence of temperature on the growth of Pseudomonas putida. Stamford Journal of Microbiology. 2015;5:9–12. doi: 10.3329/sjm.v5i1.26912
  33. Peleg M., Corradini M.G. Microbial growth curves: what the models tell us and what they cannot. Critical Reviews in Food Science and Nutrition. 2011;51(10):917. doi: 10.1080/10408398.2011.570463
  34. Pazos-Rojas L.A., Muñoz-Arenas L.C., Rodrı´guez-Andrade O., Lo´pez-Cruz L.E., Lo´pez Ortega O., Lopes-Olivares F., Luna-Suarez S., Baez A., Morales-García Y.E., Quintero-Hernández V. et al. Desiccation-induced viable but nonculturable state in Pseudomonas putida KT2440, a survival strategy. PLoS ONE. 2019;14(7):e0219554. doi: 10.1371/journal.pone.0219554
  35. Silke P., Oberhettinger P., Schuele L., Dinkelacker A., Vogel W., Dorfel D., Bezdan D., Ossowski S., Marschal M., Liese J., Willmann M. Genomic characterization of clinical and environmental Pseudomonas putida group strains and determination of their role in the transfer of antimicrobial resistance genes to Pseudomonas aeruginosa. BMC Genomics. 2017;18:859 doi: 10.1186/s12864-017-4216-2
  36. Wai-Leung N., Bassler B.L. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 2009;43:197–222. doi: 10.1146/annurev-genet-102108-134304
  37. Evans L.C. Partial Differential Equations. American Mathematical Society, 2010. 749 p. ISBN-13: ‎978-0821849743.
  38. Brown D. Linking molecular and population processes in mathematical models of quorum sensing. Bull. Math. Biol. 2013;5:1813–1839. doi: 10.1007/s11538-013-9870-1
  39. Pletnev P., Osterman I., Sergiev P., Bogdanov A., Dontsova O. Survival guide: Escherichia coli in the stationary phase. Acta Naturae. 2015;7:22–33. doi: 10.32607/20758251-2015-7-4-22-33
  40. Introduction to COMSOL Multiphysics. https://www.comsol.com (accessed 28.03.2023).
  41. Buddrus-Schiemann K., Rieger M., Mühlbauer M., Barbarossa M.V., Kuttler C., Hense A.B., Rothballer M., Uhl J., Fonseca J.R., Schmitt-Kopplin P., et al. Analysis of N-acylhomoserine lactone dynamics in continuous cultures of Pseudomonas putida IsoF by use of ELISA and UHPLC/qTOF-MS-derived measurements and mathematical models. Anal. Bioanal. Chem. 2014;406:6373–6383. doi: 10.1007/s00216-014-8063-6
Table of Contents Original Article
Math. Biol. Bioinf.
2023;18(1):89-104
doi: 10.17537/2023.18.89
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)
References

 

  Copyright IMPB RAS © 2005-2024