Russian version English version
Volume 4   Issue 2   Year 2009
Korotkov E.V. , Rudenko V.M.

Phase Shifts of the Triplet Periodicity in DNA Sequences of Genes

Mathematical Biology & Bioinformatics. 2009;4(2):66-80.

doi: 10.17537/2009.4.66.


  1. Fickett JW. Predictive methods using nucleotide sequences. Methods Biochem. Anal. 1998;39:231-245. doi: 10.1002/9780470110607.ch10
  2. Staden R. Staden: statistical and structural analysis of nucleotide sequences. Methods Mol. Biol. 1994;25:69-77.
  3. Baxevanis AD. Predictive methods using DNA sequences. Methods Biochem. Anal. 2001;43:233-52. doi: 10.1002/0471223921.ch10
  4. Gutierrez G, Oliver JL, Marin A. On the origin of the periodicity of three in protein coding DNA sequences. J. Theor. Biol. 1994;167(4):413-41.
  5. Gao J, Qi Y, Cao Y, Tung WW. Protein coding sequence identification by simultaneously characterizing the periodic and random features of DNA sequences. Journal of Biomedicine and Biotechnology. 2005;2:139-146. doi: 10.1155/JBB.2005.139
  6. Yin C, Yau SS. Prediction of protein coding regions by the 3-base periodicity analysis of a DNA sequence. Journal of Theoretical Biology. 2007;247:687-694. doi: 10.1016/j.jtbi.2007.03.038
  7. Eskesen ST, Eskesen FN, Kinghorn B, Ruvinsky A. Periodicity of DNA in exons. BMC Molecular Biology. 2004;5:12. doi: 10.1186/1471-2199-5-12
  8. Bibb MJ, Findlay PR, Johnson MW. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene. 1984;30:157-166. doi: 10.1016/0378-1119(84)90116-1
  9. Konopka AK. Sequences and codes: fundamentals of biomolecular cryptology. In: Biocomputing: Informatics and genome projects. Ed. Smith D. San Diego: Academic Press. P. 119-174.
  10. Frenkel FE, Korotkov EV. Classification analysis of triplet periodicity in protein-coding regions of genes. Gene. 2008;421:52-60. doi: 10.1016/j.gene.2008.06.012
  11. Trifonov EN. Elucidating sequence codes: three codes for evolution. Ann NY Acad. Sci. 1999;870:330-338. doi: 10.1111/j.1749-6632.1999.tb08894.x
  12. Eigen M, Winkler-Oswatitsch R. Transfer-RNA: the early adaptor. Naturwissenschaften. 1981;68:217-228. doi: 10.1007/BF01047323
  13. Zoltowski M. Is DNA Code Periodicity Only Due to CUF - Codons Usage Frequency? Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007;1:1383-1386. doi: 10.1109/IEMBS.2007.4352556
  14. Antezana MA, Kreitman M. The nonrandom location of synonymous codons suggests that reading frame-independent forces have patterned codon preferences. J. Mol. Evol. 1999;49(1):36-43. doi: 10.1007/PL00006532
  15. Issac B, Singh H, Kaur H, Raghava GPS. Locating probable genes using Fourier transform approach. Bioinformatics. 2002;18(1):96-197. doi: 10.1093/bioinformatics/18.1.196
  16. Tiwari S, Ramachandran S, Bhattacharya A, Bhattacharya S, Ramaswamy R. Prediction of probable genes by Fourier analysis of genomic sequences. Comput. Appl. Biosci. 1997;13(3):263-70.
  17. Azad RK, Borodovsky M. Probabilistic methods of identifying genes in prokaryotic genomes: connections to the HMM theory. Briefings in bioinformatics. 2004;5(2):118-130. doi: 10.1093/bib/5.2.118
  18. Henderson J, Salzberg S, Fasman KH. Finding genes in DNA with a Hidden Markov Model. J. Comput. Biol. 1997;4:127-141.
  19. Snyder EE, Stormo GD. Identification of coding regions in genomic DNA sequences: an application of dynamic programming and neural networks. Nucl. Acids Res. 1993;21:607-613. doi: 10.1093/nar/21.3.607
  20. Thomas A, Skolnick MH. A probabilistic model for detecting coding regions in DNA sequences. IMA J. Math. Appl. Med. Biol. 1994;11(3):149-160.
  21. Korotkov EV, Korotkova MA, Frenkel FE, Kudryashov NA. Information approach for search of periodicity of symbolical sequences. Molek. Biol. 2003;37:372-386.
  22. Korotkov EV, Korotkova MA, Kudryashov NA. Information decomposition method for analysis of symbolical sequences. Physical Letters A. 2003;312:198-210. doi: 10.1016/S0375-9601(03)00641-8
  23. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucl. Acids Res. 1999;27:29-34. doi: 10.1093/nar/27.1.29
  24. Frenkel FE, Korotkov EV. Using triplet periodicity of nucleotide sequences for finding potential reading frame shifts in genes. DNA Res. 2009;16:105-114. doi: 10.1093/dnares/dsp002
  25. Okamura K, Feuk L, Marqus-Bonet T, Navarro A, Scherer SW. Frequent appearance of novel protein-coding sequences by frameshift translation. Genomics. 2006;88:690-697. doi: 10.1016/j.ygeno.2006.06.009
  26. Raes J, Van de Peer Y. Functional divergence of proteins through frameshift mutations. Trends Genet. 2005;21:428-431. doi: 10.1016/j.tig.2005.05.013
  27. Kramer EM, Huei-Jiun Su, Cheng-Chiang Wu, Jer-Ming Hu. A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evolutionary Biology. 2006;6(30).
  28. Kullback S. Information Theory and Statistics. New York: Wiley; 1959.
  29. Hudson DJ. Statistics: Lectures on Elementary Statistics and Probability. Geneva: CERN; 1964.
  30. UniProt Consortium. The Universal Protein Resource (UniProt). Nucl. Acids Res. 2007;35:193-197. doi: 10.1093/nar/gkl929
  31. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 1970;48(3):443-453.
  32. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215(3):403-410.
  33. Bollenbach T, Vetsigian K, Kishony R. Evolution and multilevel optimization of the genetic code. Genome Res. 2007;17(4):405-412. doi: 10.1101/gr.6144007
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2009.4.66
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024