Russian version English version
Volume 18   Issue 1   Year 2023
Isaev E.A.1, Kornilov V.V.2, Grigoriev A.A.3

Data Center Efficiency Model: A New Approach and the Role of Artificial Intelligence

Mathematical Biology & Bioinformatics. 2023;18(1):215-227.

doi: 10.17537/2023.18.215.


  1. Data Center Handbook: Plan, Design, Build, and Operations of a Smart Data Center. Ed. Hwaiyu Geng P.E., Wiley, 2021. doi: 10.1002/9781119597537
  2. Geng H. Sustainable Data Center. In: Data Center Handbook: Plan, Design, Build, and Operations of a Smart Data Center. Wiley, 2021. P. 1–13. doi: 10.1002/9781119597537.ch1
  3. Wang K., Zhou Q., Guo S., Luo J. Cluster Frameworks for Efficient Scheduling and Resource Allocation in Data Center Networks: A Survey. In: IEEE Communications Surveys & Tutorials. 2018;20(4):3560–3580. doi: 10.1109/COMST.2018.2857922
  4. Crosby C., Curtis C. Hosting or Colocation Data Centers. In: Data Center Handbook: Plan, Design, Build, and Operations of a Smart Data Center. Wiley, 2021. P. 65–75. doi: 10.1002/9781119597537.ch4
  5. Bajic B., Rikalovic A., Suzic N., Piuri V. Industry 4.0 Implementation Challenges and Opportunities: A Managerial Perspective. In: IEEE Systems Journal. 2021;15(1):546–559. doi: 10.1109/JSYST.2020.3023041
  6. Rikalovic A., Suzic N., Bajic B., Piuri V. Industry 4.0 Implementation Challenges and Opportunities: A Technological Perspective. In: IEEE Systems Journal. 2022;16(2):2797–2810. doi: 10.1109/JSYST.2021.3101673
  7. 10 Hot Data Center Technologies and Trends to Watch in 2021. CRN Media Network. (accessed 19.06.2023).
  8. Shi L., Shi Y., Wei X., Ding X., Wei Z. Cost Minimization Algorithms for Data Center Management. In: IEEE Transactions on Parallel and Distributed Systems. 2017;28(1):60–71. doi: 10.1109/TPDS.2016.2549016
  9. Yuan H., Bi J., Zhang J., Zhou M. Energy Consumption and Performance Optimized Task Scheduling in Distributed Data Centers. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2022;52(9):5506–5517. doi: 10.1109/TSMC.2021.3128430
  10. Allen M. And the title of the largest data center in the world and largest data center in US goes to… Data Center. 2018. (accessed 19.06.2023).
  11. Torell W. Network-Critical Physical Infrastructure: Optimizing Business Value. In: INTELEC 05 – Twenty-Seventh International Telecommunications Conference. 2005. P. 119–124. doi: 10.1109/INTLEC.2005.335205
  12. Yuan X., Zhou X., Pan Y., Kosonen R., Cai H., Gao Y., Wang Y. Phase change cooling in data centers: A review. Ener. Buildings. 2021;236:110764. doi: 10.1016/j.enbuild.2021.110764
  13. Ahmed K.M.U., Bollen M.H.J., Alvarez M. A Review of Data Centers Energy Consumption and Reliability Modeling. In: IEEE. 2021;9:152536–152563. doi: 10.1109/ACCESS.2021.3125092
  14. Kosik B. Energy and Sustainability in Data Centers. In: Data Center Handbook: Plan, Design, Build, and Operations of a Smart Data Center. Wiley, 2021. P. 27–63. doi: 10.1002/9781119597537.ch3
  15. Shaikh A., Uddin M., Elmagzoub M.A., Alghamdi A. PEMC: Power Efficiency Measurement Calculator to Compute Power Efficiency and CO2 Emissions in Cloud Data Centers. In: IEEE. 2020;8:195216–195228. doi: 10.1109/ACCESS.2020.3033791
  16. Lin W., Wu W., Li K. Energy‐Saving Technologies of Servers in Data Centers. In: Data Center Handbook: Plan, Design, Build, and Operations of a Smart Data Center. Wiley, 2021. P. 337–348. doi: 10.1002/9781119597537.ch19
  17. Geng C.‐H. Design of Energy‐Efficient IT Equipment. In: Data Center Handbook: Plan, Design, Build, and Operations of a Smart Data Center. Wiley, 2021. P. 323–336. doi: 10.1002/9781119597537.ch18
  18. Raja S.P. Green Computing: A Future Perspective and the Operational Analysis of a Data Center. In: IEEE Transactions on Computational Social Systems. 2022;9(2):650–656. doi: 10.1109/TCSS.2021.3093702
  19. Kosik B. Data Center Benchmark Metrics. In: Data Center Handbook: Plan, Design, Build, and Operations of a Smart Data Center. Wiley, 2021. P. 617–625. doi: 10.1002/9781119597537.ch32
  20. Cao Z., Zhou X., Hu H., Wang Z., Wen Y. Toward a Systematic Survey for Carbon Neutral Data Centers. In: IEEE Communications Surveys & Tutorials. 2022;24(2):895–936. doi: 10.1109/COMST.2022.3161275
  21. Masanet E., Arman S., Koomey J. Characteristics of low-carbon data centers. Nat. Clim. Change. 2013;3:627–630. doi: 10.1038/nclimate1786
  22. Why Green Data Center Matters. FS Community. (accessed 19.06.2023).
  23. Curtis P.M. Data Center Cooling Efficiency, Concepts, & Technologies. In: Maintaining Mission Critical Systems in a 24/7 Environment, IEEE. 2020. P. 375–396. doi: 10.1002/9781119506133.ch12
  24. Roach J. To cool datacenter servers, Microsoft turns to boiling liquid. Microsoft. (accessed 19.06.2023).
  25. Han Y., Lau B.L., Tang G., Chen H., Zhang X. Si Microfluid Cooler with Jet-Slot Array for Server Processor Direct Liquid Cooling. In: IEEE Transactions on Components, Packaging and Manufacturing Technology. 2020;10(2):255–262. doi: 10.1109/TCPMT.2019.2933864
  26. Jung S.-M., Ricci B., Chung G. Lithium Ion Battery System in Data Centers. In: 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). 2015. P. 968–973. doi: 10.1109/EEEIC.2015.7165294
  27. Li S., Fu Q., Chen G., Li Y., Zhang J., Feng L., Liu J., Zhou C., Liang A., Zhou H., Ahuja N., Qiao Q. An Advanced Distributed Backup Power Design with Lithium Iron Phosphate Battery for Data Center Energy Efficiency. In: 2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm). 2021. P. 563–567. doi: 10.1109/ITherm51669.2021.9503303
  28. Kao W. Renewable and Clean Energy for Data Centers. In: Data Center Handbook. Wiley, 2015. P. 559–576. doi: 10.1002/9781118937563.ch30
  29. Ahammed M.T., Osman N., Das C., Hossain M.A., Hossain S., Kaium M.H. Analysis of Energy Consumption for a Hybrid Green Data Center. In: 2022 International Conference on Innovations in Science, Engineering and Technology (ICISET). 2022. P. 318–323. doi: 10.1109/ICISET54810.2022.9775899
  30. Lazaar N., Barakat M., Hafiane M., Sabor J., Gualous H. Modeling and control of a hydrogen-based green data center. Electr. Pow. Syst. Res. 2021;199:107374. doi: 10.1016/j.epsr.2021.107374
  31. Liu L., Zhang Q., Zhai Z., Yue C., Ma X. State-of-the-art on thermal energy storage technologies in data center. Ener. Buildings. 2020;226:110345. doi: 10.1016/j.enbuild.2020.110345
  32. Guo P., Wang S., Lei Y., Li J. Numerical simulation of solar chimney-based direct airside free cooling system for green data centers. J. Buil. Eng. 2020;32:101793. doi: 10.1016/j.jobe.2020.101793
  33. Global artificial intelligence market size 2021 rise at 35.6% CAGR will grow to USD 299.64 billion by 2026. Facts & Factors. (accessed 19.06.2023).
  34. Ahdoot A.A. Three ways artificial intelligence will revolutionize data centers. Data Center Knowledge. (accessed 19.06.2023).
  35. Evans R., Gao J. DeepMind AI reduces google data centre cooling bill by 40%. Google DeepMind. (accessed 19.06.2023).
  36. Kliazovich D., Pecero J.E., Tchernykh A., Bouvry P., Khan S.U., Zomaya A.Y. CA-DAG: Modeling communication-aware applications for scheduling in cloud computing. J. Grid Comput. 2016;14:23–39. doi: 10.1007/s10723-015-9337-8
  37. Ahmad R.W., Gani A., Hamid S.H., Shiraz M., Yousafzai A., Xia F. A survey on virtual machine migration and server consolidation frameworks for cloud data centers. J. Netw. Comput. Appl. 2015;52:11–25. doi: 10.1016/j.jnca.2015.02.002
  38. Armenta-Cano F., Tchernykh A., Cortés-Mendoza J.M., Yahyapour R., Drozdov A., Bouvry P., Kliazovich D., Avetisyan A., Nesmachnow S. Min_c: Heterogeneous concentration policy for energy-aware scheduling of jobs with resource contention. Program. Comput. Soft. 2017;43:204–215. doi: 10.1134/S0361768817030021
  39. Muraña J., Nesmachnow S., Armenta F., Tchernykh A. Characterization, modeling and scheduling of power consumption of scientific computing applications in multicores. Cluster Comput. 2019;22(3):839–859. doi: 10.1007/s10586-018-2882-8
  40. Feng H., Deng Y., Li J. A global-energy-aware virtual machine placement strategy for cloud data centers. J. Syst. Architect. 2021;116:102048. doi: 10.1016/j.sysarc.2021.102048
  41. Helali L., Omri M.N. A survey of data center consolidation in cloud computing systems. Comput. Sc. Rev. 2021;39:100366. doi: 10.1016/j.cosrev.2021.100366
  42. Khoshkholghi M.A., Derahman M.N., Abdullah A., Subramaniam S., Othman M. Energy-Efficient Algorithms for Dynamic Virtual Machine Consolidation in Cloud Data Centers. In: IEEE. 2017;5:10709–10722. doi: 10.1109/ACCESS.2017.2711043
  43. Uddin M., Darabidarabkhani Y., Shah A., Memon J. Evaluating power efficient algorithms for efficiency and carbon emissions in cloud data centers: A review. Renew. Sust. Energ. Rev. 2015;51:1553–1563. doi: 10.1016/j.rser.2015.07.061
  44. Liang B., Wu D., Wu P., Su Y. An energy-aware resource deployment algorithm for cloud data centers based on dynamic hybrid machine learning. Knowl.-Based Syst. 2021;222:107020. doi: 10.1016/j.knosys.2021.107020
  45. Wodecki B. Alibaba opens AI-focused data center in Germany. Data Center Knowledge. 2022. (accessed 19.06.2023).
  46. Burgess M. Google's DeepMind trains AI to cut its energy bills by 40%. Wired. 2016. (accessed 19.06.2023).
  47. Patterson D. Good news about the carbon footprint of machine learning training. Google AI Blog. 2022. (accessed 19.06.2023).
  48. McKinsey report: Two AI trends top 2022 outlook. Venture Beat. 2022. (accessed 19.06.2023).


Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2023.18.215
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)


  Copyright IMPB RAS © 2005-