Russian version English version
Volume 18   Issue 2   Year 2023
Pozdnyakov E.M., Korneichuk A.D., Rogacheva A.V., Vasilev G.A.

Polymerase β Limits the Rate of DNA Single-Strand Break Repair

Mathematical Biology & Bioinformatics. 2023;18(2):294-307.

doi: 10.17537/2023.18.294.


  1. Sutherland B.M., Bennett P.V., Sidorkina O., Laval J. Clustered damages and total lesions induced in DNA by ionizing radiation: oxidized bases and strand breaks. Biochemistry. 2000;39(27):8026–8031. doi: 10.1021/bi9927989
  2. Plumb M.A., Smith G.C.M., Cunniffe S.M.T., Jackson S.P., O'NEILL P. DNA-PK activation by ionizing radiation-induced DNA single-strand breaks. Int. J. Radiat. Biol. 1999;75(5):553–561. doi: 10.1080/095530099140195
  3. Caldecott K.W. Single-strand break repair and genetic disease. Nat. Rev. Genet. 2008;9(8):619–631. doi: 10.1038/nrg2380
  4. Yao C.-L., Somero G.N. The impact of acute temperature stress on hemocytes of invasive and native mussels (Mytilus galloprovincialis and Mytilus californianus): DNA damage, membrane integrity, apoptosis and signaling pathways. J. Exp. Biol. 2012;215(24):4267–4277. doi: 10.1242/jeb.073577
  5. Miller D.L., Reese J.A., Frazier M.E. Single strand DNA breaks in human leukocytes induced by ultrasound in vitro. Ultrasound Med. Biol. 1989;15(8):765–771. doi: 10.1016/0301-5629(89)90117-8
  6. Abbotts R., Wilson D.M. Coordination of DNA single strand break repair. Oxidative DNA Damage Repair. 2017;107:228–244. doi: 10.1016/j.freeradbiomed.2016.11.039
  7. Caldecott K.W. DNA single-strand breaks and neurodegeneration. DNA Repair. 2004;3(8):875–882. doi: 10.1016/j.dnarep.2004.04.011
  8. Provasek V.E., Mitra J., Malojirao V.H., Hegde M.L. DNA Double-Strand Breaks as Pathogenic Lesions in Neurological Disorders. Int. J. Mol. Sci. 2022;23(9). doi: 10.3390/ijms23094653
  9. Caldecott K.W. DNA single-strand break repair. Experimental Cell Research. 2014;329(1):2–8. doi: 10.1016/j.yexcr.2014.08.027
  10. Fortini P., Dogliotti E. Base damage and single-strand break repair: Mechanisms and functional significance of short- and long-patch repair subpathways. DNA Repair. 2007;6(4):398–409. doi: 10.1016/j.dnarep.2006.10.008
  11. Godon C., Cordelières F.P., Biard D., Giocanti N., Mégnin-Chanet F., Hall J., Favaudon V. «PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility. Nucleic Acids Res. 2008;36(13):4454–4464. doi: 10.1093/nar/gkn403
  12. Ames B.N., Shigenaga M.K., Hagen T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. U. S. A. 1993;90(17):7915–7922. doi: 10.1073/pnas.90.17.7915
  13. Pooley K.A., Baynes C., Driver K.E., Tyrer J., Azzato E.M., Pharoah P.D.P., Easton D.F., Ponder B.A.J., Dunning A.M. Common Single-Nucleotide Polymorphisms in DNA Double-Strand Break Repair Genes and Breast Cancer Risk. Cancer Epidemiol. Biomarkers Prev. 2008;17(12):3482–3489. doi: 10.1158/1055-9965.EPI-08-0594
  14. Dianov G., Price A., Lindahl T. Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Mol. Cell. Biol. 1992;12(4):1605–1612. doi: 10.1128/mcb.12.4.1605-1612.1992
  15. Frosina G., Fortini P., Rossi O., Carrozzino F., Raspaglio G., Cox L.S., Lane D.P., Abbondandolo A., Dogliotti E. Two pathways for base excision repair in mammalian cells. J. Biol. Chem. 1996;271(16):9573–9578. doi: 10.1074/jbc.271.16.9573
  16. Pascal J.M. The comings and goings of PARP-1 in response to DNA damage. DNA Repair. 2018;71:177–182. doi: 10.1016/j.dnarep.2018.08.022
  17. Gibson B.A., Kraus W.L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 2012;13(7):411–424. doi: 10.1038/nrm3376
  18. Kraus W.L., Hottiger M.O. PARP-1 and gene regulation: Progress and puzzles. Molecular Aspects of Medicine. 2013;34(6):1109–1123. doi: 10.1016/j.mam.2013.01.005
  19. Waldman M., Nudelman V., Shainberg A., Abraham N.G., Kornwoski R., Aravot D., Arad M., Hochhauser E. PARP-1 inhibition protects the diabetic heart through activation of SIRT1-PGC-1α axis». Exp. Cell Res. 2018;373(1):112–118. doi: 10.1016/j.yexcr.2018.10.003
  20. Wang Y., Luo W., Wang Y. PARP-1 and its associated nucleases in DNA damage response. DNA Repair. 2019;81:102651. doi: 10.1016/j.dnarep.2019.102651
  21. Whitehouse C.J., Taylor R.M, Thistlethwaite A., Zhang H., Karimi-Busheri F., Lasko D.D., Weinfeld M., Caldecott K.W. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell. 2001;104(1):107–117. doi: 10.1016/S0092-8674(01)00195-7
  22. Sukhanova M.V., Abrakhi S., Joshi V., Pastre D., Kutuzov M.M., Anarbaev R.O., Curmi P.A., Hamon L., Lavrik O.I. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging. Nucleic Acids Res. 2016;44(6):e60. doi: 10.1093/nar/gkv1476
  23. Simonin F., Poch O., Delarue M., de Murcia G. Identification of potential active-site residues in the human poly(ADP-ribose) polymerase. J. Biol. Chem. 1993;268(12):8529–8535. doi: 10.1016/S0021-9258(18)52907-0
  24. Bell N.A.W., Haynes P.J., Brunner K., de Oliveira T.M., Flocco M.M., Hoogenboom B.W., Molloy J.E. Single-molecule measurements reveal that PARP1 condenses DNA by loop stabilization. Sci. Adv. 2021;7(33). doi: 10.1126/sciadv.abf3641
  25. London R.E. The structural basis of XRCC1-mediated DNA repair. DNA Repair. 2015;30:90–103. doi: 10.1016/j.dnarep.2015.02.005
  26. Aceytuno R.D., Piett C.G., Havali-Shahriari Z., Edwards R.A., Rey M., Ye R., Javed F., Fang S., Mani R., Weinfeld M. et al. Structural and functional characterization of the PNKP-XRCC4-LigIV DNA repair complex. Nucleic Acids Res. 2017;45(10):6238–6251. doi: 10.1093/nar/gkx275
  27. Srivastava P., Sarma A., Chaturvedi C.M. Targeting DNA repair with PNKP inhibition sensitizes radioresistant prostate cancer cells to high LET radiation. PLOS ONE. 2018;13(1):e0190516. doi: 10.1371/journal.pone.0190516
  28. Moor N.A., Vasil’eva I.A., Anarbaev R.O., Antson A.A., Lavrik O.I. Quantitative characterization of protein-protein complexes involved in base excision DNA repair. Nucleic Acids Res. 2015;43(12):6009–6022. doi: 10.1093/nar/gkv569
  29. Kumar A., Reed A.J., Zahurancik W.J., Daskalova S.M., Hecht S.M., Suo Z. Interlocking activities of DNA polymerase β in the base excision repair pathway. Proc. Natl. Acad. Sci. 2022;119(10):e2118940119. doi: 10.1073/pnas.2118940119
  30. Sokhansanj B.A., Rodrigue G.R., Fitch J.P., Wilson III D.M. A quantitative model of human DNA base excision repair. I. mechanistic insights. Nucleic Acids Res. 2002;30(8):1817–1825. doi: 10.1093/nar/30.8.1817
  31. Cotner-Gohara E., Kim I.-K., Hammel M., Tainer J.A., Tomkinson A.E., Ellenberger T. Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states. Biochemistry. 2010;49(29):6165–6176. doi: 10.1021/bi100503w
  32. Hammel M., Rashid I., Sverzhinsky A., Pourfarjam Y., Tsai M.-S., Ellenberger T., Pascal J.M., Kim I.-K., Tainer J.A., Tomkinson A.E. An atypical BRCT-BRCT interaction with the XRCC1 scaffold protein compacts human DNA Ligase IIIα within a flexible DNA repair complex. Nucleic Acids Res. 2021;49(1):306–321. doi: 10.1093/nar/gkaa1188
  33. McNally J.R., O’Brien P.J. Kinetic analyses of single-stranded break repair by human DNA ligase III isoforms reveal biochemical differences from DNA ligase I. J. Biol. Chem. 2017;292(38):15870–15879. doi: 10.1074/jbc.M117.804625
  34. Ward J.F. Nature of Lesions Formed by Ionizing Radiation. In: DNA Damage and Repair: Volume 2: DNA Repair in Higher Eukaryotes. Eds. J.A. Nickoloff, M.F. Hoekstra. Totowa, NJ: Humana Press, 1998. P. 65–84. doi: 10.1007/978-1-59259-455-9_5
  35. Koczor C.A, Saville K.M., Andrews J.F., Clark J., Fang Q., Li J., Al-Rahahleh R.Q., Md Ibrahim, McClellan S., Makarov M.V., Migaud M.E., Sobol R.W. Temporal dynamics of base excision/single-strand break repair protein complex assembly/disassembly are modulated by the PARP/NAD(+)/SIRT6 axis. Cell Rep. 2021;37(5):109917. doi: 10.1016/j.celrep.2021.109917
  36. Howard M.J., Horton J.K., Zhao M.-L., Wilson S.H. Lysines in the lyase active site of DNA polymerase β destabilize nonspecific DNA binding, facilitating searching and DNA gap recognition. J. Biol. Chem. 2020;295(34):12181–12187. doi: 10.1074/jbc.RA120.013547
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2023.18.294
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024