Russian version English version
Volume 18   Issue 2   Year 2023
Voropaeva O.F.1, Tsgoev Ch.A.1,2

Numerical modelling of myocardial infarction. II. Analysis of macrophage polarization mechanism as a therapeutic target

Mathematical Biology & Bioinformatics. 2023;18(2):367-404.

doi: 10.17537/2023.18.367.


  1. Chereshnev V.A., Gusev E.Iu. Immunologiia vospaleniia: rol' tsitokinov. Meditsinskaia immunologiia (Medical immunology). 2001;3(3):361-368 (in Russ.).
  2. Iarilin A.A. Immunologiia (Immunology). GEOTAR-Media, 2010. 749 p. (in Russ.).
  3. Ferrante C.J., Leibovich S.J. Regulation of Macrophage Polarization and Wound Healing. Advances in Wound Care. 2011;1(1):10-16. doi: 10.1089/wound.2011.0307
  4. Hesketh M., Sahin K.B., West Z.E., Murray R.Z. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing. Int. J. Mol. Sci. 2017;18. Article No. 1545. doi: 10.3390/ijms18071545
  5. Titov L.P. Monocytes, macrophages, dendritic and myeloid suppressor cells: genesis, classification, immunobiological properties. Proceedings of the National Academy of Sciences of Belarus, Medical series . 2018;15(3):363-382 (in Russ.). doi: 10.29235/1814-6023-2018-15-3-363-382
  6. Fedorov A.A., Ermak N.A., Gerashchenko T.S., Topolnitskii E.B., Shefer N.A., Rodionov E.O., Stakheyeva M.N. Polarization of macrophages: mechanisms, markers and factors of induction. Siberian journal of oncology. 2022;21(4):124-136 (in Russ.). doi: 10.21294/1814-4861-2022-21-4-124-136
  7. Malyshev I.Iu., Kruglov S.V., Bakhtina L.Iu., Malysheva E.V., Zubin M., Norkin M. Biulleten' eksperimental'noi biologii i meditsiny (Bulletin of Experimental Biology and Medicine). 2004;138(8):162-165 (in Russ.). doi: 10.1007/BF02694358
  8. Malyshev I.Y. Immunity cell matrix reprogramming and damage role in tumor pathogenesis. JOURNAL of N.N. Blokhin Russian Cancer Research Center RAMS. 2012;23(2):21-33 (in Russ.).
  9. Malyshev I.Yu. Phenomena and signaling mechanisms of macrophage reprogramming. Patologicheskaya Fiziologiya i Eksperimental'naya Terapiya (Pathological physiology and experimental therapy). 2015;59(2):99-111 (in Russ.).
  10. Sica A., Erreni M., Allavena P., Porta C. Macrophage polarization in pathology. Cell Mol. Life Sci. 2015;72(21):4111–4126. doi: 10.1007/ s00018-015-1995-y
  11. Metchnikoff El. Immunity in the infectious diseases. Cambridge: Cambridge Univ.Press, 1905. 617 p. doi: 10.5962/bhl.title.29861
  12. Orekhov A.N., Orekhova V.A., Nikiforov N.G., Myasoedova V.A., Grechko A.V., Romanenko E.B., Zhang D., Chistiakov D.A. Monocyte differentiation and macrophage polarization. Vessel Plus. 2019;3. doi: 10.20517/2574-1209.2019.04
  13. Chernykh E.R., Shevela E.Ya., Ostanin A.A. The role of macrophages in damage recovery of central nervous system: new options for treatment of neurological disorders. Medical Immunology (Russia). 2017;19(1):7-18 (in Russ.). doi: 10.15789/1563-0625-2017-1-7-18
  14. Hwang J., Zheng M., Wiraja C., Cui M., Yang L., Xu C. Reprogramming of macrophages with macrophage cell membrane-derived nanoghosts. Nanoscale Adv. 2020;2:5254-5262. doi: 10.1039/D0NA00572J
  15. Malysheva I.E., Tikhonovich E.L., Oleinik E.K., Topchieva L.V., Balan O.V. Macrophage polarization in sarcoidosis. Medical Immunology (Russia). 2021;23(1):7-16 (in Russ.). doi: 10.15789/1563-0625-MPI-2083
  16. Kumar S. , Mittal S., Gupta P., Singh M., Chaluvally-Raghavan P., Pradeep S. Metabolic reprogramming in tumor-associated macrophages in the ovarian tumor microenvironment. Cancers. 2022;14(21). Article No. 5224. doi: 10.3390/cancers14215224
  17. Liu Y., Xu R., Gu H., Zhang E., Qu J., Cao W., Huang X., Yan H., He J., Cai Z. Metabolic reprogramming in macrophage responses. Biomarker Research. 2021;9(1):1-17. doi: 10.1186/s40364-020-00251-y
  18. Cai H., Zhang Y., Wang J., Gu J. Defects in Macrophage Reprogramming in Cancer Therapy: The Negative Impact of PD-L1/PD-1. Front. Immunol. 2021;12. Article No. 690869. doi: 10.3389/fimmu.2021.690869
  19. Bart V.M.T., Pickering R.J., Taylor P.R., Ipseiz N. Macrophage reprogramming for therapy. Immunology. 2021;163:128-144. doi: 10.1111/imm.13300
  20. Baron T., Hambraeus K., Sundström J., Erlinge D., Jernberg T., Lindahl B., TOTAL-AMI study group. Type 2 myocardial infarction in clinical practice. Heart. 2015;101:101-106. doi: 10.1136/heartjnl-2014-306093
  21. Troidl C., Möllmann H., Nef H., Masseli F., Voss S., Szardien S., Willmer M., Rolf A., Rixe J., Troidl K., Kostin S., Hamm C., Elsässer A. Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J. Cell. Mol. Med. 2009;13(9B):3485–3496. doi: 10.1111/j.1582-4934.2009.00707.x
  22. Frantz S., Nahrendorf M. Cardiac macrophages and their role in ischaemic heart disease. Cardiovascular Research. 2014;102(2):240-248. doi: 10.1093/cvr/cvu025
  23. Saxena A., Russo I., Frangogiannis N.G. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Translat. Res. 2016;167(1):52-166. doi: 10.1016/j.trsl.2015.07.002
  24. Stafeev I.S., Menshikov M.Y., Tkachuk V.A., Parfyonova Ye.V. The Role of Macrophages in Repair of Injured Myocardium and Perspectives of Metabolic Reprogramming of Immune Cells for Myocardial Post-Infarction Recovery. Kardiologiia . 2017;57(1)2:53-59. doi: 10.18087/cardio.2017.12.10067
  25. Chen M., Li X., Wang S., Yu L., Tang J., Zhou S. The Role of Cardiac Macrophage and Cytokines on Ventricular Arrhythmias. Front. Physiol. 2020;11. Article No. 1113. doi: 10.3389/fphys.2020.01113
  26. Lafuse W. P., Wozniak D. J., Rajaram M. V. S. Role of cardiac macrophages on cardiac inflammation, fibrosis and tissue repair. Cells. 2020;10(1):51. doi: 10.3390/cells10010051
  27. Kim Y., Nurakhayev S., Nurkesh A., Zharkinbekov Z., Saparov A. Macrophage polarization in cardiac tissue repair following myocardial infarction. International Journal of Molecular Sciences. 2021;22(5):2715. doi: 10.3390/ijms22052715
  28. Wang Y., Hou M., Duan S., Zhao Z., Wu X., Chen Y., Yin L. Macrophage-targeting gene silencing orchestrates myocardial microenvironment remodeling toward the anti-inflammatory treatment of ischemia-reperfusion (IR) injury. Bioactive Materials. 2022;17:320-333. doi: 10.1016/j.bioactmat.2022.01.026
  29. Fontaine M.A.C., Jin H., Gagliardi M., Rousch M., Wijnands E., Stoll M., Li X., Schurgers L., Reutelingsperger C., Schalkwijk C., et al. Blood Milieu in Acute Myocardial Infarction Reprograms Human Macrophages for Trauma Repair. Adv. Sci. 2023;10. Article No. 2203053. doi: 10.1002/advs.202203053
  30. Sakharov V.N., Litvitsky P.F. Mathematical modeling of macrophage reprogramming during inflammation and immunity processes: obstacles and opportunities. Sechenov Medical Journal. 2015(1):27-30 ((in Russ.).
  31. Voropaeva O.F., Tsgoev C.A. A Numerical Model of Inflammation Dynamics in the Core of Myocardial Infarction. Journal of Applied and Industrial Mathematics. 2019;13(2):372-383. doi: 10.1134/S1990478919020182
  32. Tsgoev C.A., Voropaeva O.F., Shokin Y.I. Mathematical modelling of acute phase of myocardial infarction. Russian Journal of Numerical Analysis and Mathematical Modelling. 2020;35(2):111-126. doi: 10.1515/rnam-2020-0009
  33. Voropaeva O.F., Tsgoev C.A., Shokin Yu.I. Numerical simulation of the inflammatory phase of myocardial infarction. Journal of Applied Mechanics and Technical Physics. 2021;62(3):441-450. doi: 10.1134/S002189442103010X
  34. Voropaeva O.F., Tsgoev Ch.A. Numerical Modelling of Myocardial Infarction. I. Analysis of Spatiotemporal Aspects of the Local Inflammatory Response. Mathematical Biology and Bioinformatics. 2023;18(1):49-71. doi: 10.17537/2023.18.49
  35. Jin Y.F., Han H.C., Berger J., Dai Q., Lindsey M.L. Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling. BMC Systems Biology. 2011;5. Article No. 60. doi: 10.1186/1752-0509-5-60
  36. Wang Y., Yang T., Ma Y., Halade G.V., Zhang J., Lindsey M.L., Jin Y.F. Mathematical modeling and stability analysis of macrophage activation in left ventricular remodeling post-myocardial infarction. BMC Genomics. 2012;13. Article No. S21. doi: 10.1186/1471-2164-13-S6-S21
  37. Saxena A., Bujak M., Frunza O., Dobaczewski M., Gonzalez-Quesada C., Lu B., Gerard C., Frangogiannis N.G. CXCR3-independent actions of the CXC chemokine CXCL10 in the infarctedmyocardium and in isolated cardiac fibroblasts are mediated through proteoglycans. Cardiovascular Research. 2014;103:217-227. doi: 10.1093/cvr/cvu138
  38. Bujak M., Dobaczewski M., Chatila K., Mendoza L.H., Li N., Reddy A., Frangogiannis N.G. Interleukin-1 Receptor Type I Signaling Critically Regulates Infarct Healing and Cardiac Remodeling. Am. J. Pathol. 2008;173:57-67. doi: 10.2353/ajpath.2008.070974
  39. van Zuylen V.L., den Haan M.C., Roelofs H., Fibbe W.E., Schalij M.J., Atsma D.E. . Myocardial infarction models in NOD/Scid mice for cell therapy research: permanent ischemia vs ischemia-reperfusion. SpringerPlus. 2015;4. Article No. 336. doi: 10.1186/s40064-015-1128-y
  40. Jung M., Ma Y., Iyer R.P., DeLeon-Pennell K.Y., Yabluchanskiy A., Garrett M.R., Lindsey M.L. IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic research in cardiology. 2017;112:1-14. doi: 10.1007/s00395-017-0622-5
  41. Yanenko N.N. The Method of Fractional Steps for the Solution of Problems of Mathematical Physics in Several Variables. Berlin: Springer-Verlag, 1971.
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2023.18.367
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024