References
- Watanabe M., Semchonok D.A., Webber-Birungi M.T., Ehira S., Kondo K., Narikawa R., Ohmori M., Boekema E.J., Ikeuchi M. Attachment of phycobilisomes in an antenna–photosystem I supercomplex of cyanobac-teria. Proceedings of the National Academy of Sciences. 2014;111(7):2512–2517. doi: 10.1073/pnas.1320599111
- Simpson D.J., Knoetzel J. Light-harvesting Complexes of Plants and Algae: Introduction, Survey and Nomenclature. Oxygenic Photosynthesis: The Light Reactions. Advances in Photosynthesis and Respiration. 1996;4. doi: 10.1007/0-306-48127-8_27
- Naschberger A., Mosebach L., Tobiasson V., Kuhlgert S., Scholz M., Perez-Boerema A., Ho T.T.H., Vidal-Meireles A., Takahashi Y., Hippler M., Amunts A. Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex. Nat. Plants. 2022;8(10):1191–1201. doi: 10.1038/s41477-022-01253-4
- Höhner R., Pribil M., Herbstová M., Lopez L.S., Kunz H.-H., Li M., Wood M., Svoboda V., Puthiyaveetil S., Leister D., Kirchhoff H. Plastocyanin is the long-range electron carrier between photo-system II and photosystem I in plants. Proceedings of the National Academy of Sciences. 2020;117(26):15354–15362. doi: 10.1073/pnas.2005832117
- Caspy I., Borovikova-Sheinker A., Klaiman D., Shkolnisky Y., Nelson N. The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin. Nat. Plants. 2020;6:1300–1305. doi: 10.1038/s41477-020-00779-9
- Caspy I., Fadeeva M., Kuhlgert S., Borovikova-Sheinker A., Klaiman D., Masrati G., Drepper F., Ben-Tal N., Hippler M., Nelson N. Structure of plant photosystem I-plastocyanin complex reveals strong hydrophobic interactions. Biochem J. 2021;478(12):2371–2384. doi: 10.1042/BCJ20210267
- Hippler M., Reichert J., Sutter M., Zak E., Altschmied L., Schröer U., Herrmann R.G., Haehnel W. The plastocyanin binding domain of photosystem I. EMBO J. 1996;15(23):6374–84. doi: 10.1002/j.1460-2075.1996.tb01028.x
- Hippler M., Drepper F., Haehnel W. The oxidizing site of photosystem I modulates the electron transfer from plastocyanin to P700+. Photosyntthesis: from Light to Biosphere. 1995;2:99–102. doi: 10.1007/978-94-009-0173-5_254
- Drepper F., Hippler M., Nitschke W., Haehnel W. Binding dynamics and electron transfer between plastocyanin and photosystem I. Biochemistry. 1996;35:1282–1295. doi: 10.1021/bi951471e
- Fedorov V.A., Kovalenko I.B., Khruschev S.S., Ustinin D.M., Antal T.K., Riznichenko G.Yu., Rubin A.B. Comparative analysis of plastocyanin-cytochrome f complex for-mation in higher plants, green algae and cyanobacteria. Physiologia Plantarum. 2019(166):320–335. doi: 10.1111/ppl.12940
- Khruschev S.S., Abaturova A.M., Diakonova A.N., Ustinin D.M., Zlenko D.V., Fedorov V.A., Kovalenko I.B., Riznichenko G.Yu., Rubin A.B. Multi-particle brownian dynamics software ProKSim for protein-protein interactions modeling. Computer Research and Modeling. 2013;5(1):47–64. doi: 10.20537/2076-7633-2013-5-1-47-64
- Mazor Y., Borovikova A., Caspy I. Nelson N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nature Plants. 2017;3:17014. doi: 10.1038/nplants.2017.14
- Webb B., Sali A. Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics. 2016;54(1). doi: 10.1002/cpbi.3
- Schrödinger L.L.C. DeLano W. The PyMOL Molecular Graphics System, Version 2.5. https://pymol.org (accessed 20.11.2023).
- Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., Groot B., Grubmüller H. MacKerell A.D.Jr. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods. 2017;14(1):71–73. doi: 10.1038/nmeth.4067
- Vanommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., Darian E., Guvench O., Lopes P., Vorobyov I., Mackerell A. D. Jr. CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. Journal of Computational Chemistry. 2010;31(4):671–690. doi: 10.1002/jcc.21367
- Adam S., Knapp‐Mohammady M., Yi.J., Bondar A.N. Revised CHARMM force field parameters for iron‐containing cofactors of photosystem II. Journal of Computational Chemistry. 2018;39(1):7–20. doi: 10.1002/jcc.24918
- Huang J., MacKerell Jr A.D. CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry. 2013;34(25):2135–2145. doi: 10.1002/jcc.23354
- Vanommeslaeghe K., MacKerell Jr A.D. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. Journal of Chemical Information and Modeling. 2012;52(12):3144–3154. doi: 10.1021/ci300363c
- Vanommeslaeghe K., Raman E.P., MacKerell Jr A.D. Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. Journal of Chemical Information and Modeling. 2012;52(12):3155–3168. doi: 10.1021/ci3003649
- Grudzinski W., Nierzwicki L., Welc R., Reszczynska E., Luchowski R., Czub J., Gruszecki W.I. Localization and orientation of xanthophylls in a lipid bilayer. Scientific Reports. 2017;7(1):1–10. doi: 10.1038/s41598-017-10183-7
- Teixeira M.H., Arantes G.M. Effects of lipid composition on membrane distribution and permeability of natural quinones. RSC Advances. 2019;9(29):16892–16899. doi: 10.1039/C9RA01681C
- Jo S., Kim T., Iyer V.G., Im W. CHARMM‐GUI: a web‐based graphical user interface for CHARMM. Journal of Computational Chemistry. 2008;29(11):1859–1865. doi: 10.1002/jcc.20945
- Lee J., Patel D.S., Ståhle J., Park S.-J., Kern N.R., Kim S., Lee J., Cheng X., Valvano M.A., Holst O., Knirel Y.A., Qi Y., Jo S., Klauda J.B., Widmalm G., Im W. CHARMM-GUI membrane builder for complex biological membrane simulations with glycolipids and lipoglycans. Journal of Chemical Theory and Computation. 2018;15(1):775–786. doi: 10.1021/acs.jctc.8b01066
- Chang C.H., Kim K. Density functional theory calculation of bonding and charge parameters for molecular dynamics studies on [FeFe] hydrogenases. Journal of Chemical Theory and Computation. 2009;5(4):1137–1145. doi: 10.1021/ct800342w
- Abraham M.J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25. doi: 10.1016/j.softx.2015.06.001
- Gross E.L., Pearson Jr. D.C., Pearson D.C. Brownian dynamics simulations of the interaction of Chlamydomonas cytochrome f with plastocyanin and cytochrome c6. Biophys. J. 2003;85(3):2055–2068. doi: 10.1016/S0006-3495(03)74633-5
- Langevin P. On the theory of Brownian motion. C. R. Acad. Sci. 1908;146:530–533.
- Fogolari F., Brigo A., Molinari H. The Poisson-Boltzmann Equation for Biomolecular Electrostatics: A Tool for Structural Biology. J. Mol. Recognit. 2002;15:377–392. doi: 10.1002/jmr.577
- Ankerst M., Breunig M.M., Kriegel H.P., Sander J. OPTICS: Ordering Points to Identify the Clustering Structure. Proc. ACM SIGMOD. 1999:49–60. doi: 10.1145/304181.304187
- Elke A., Böhm C., Kröger P. DeLiClu: boosting robustness, completeness, usability, and efficiency of hierarchical clustering by a closest pair ranking. In: Proc. 10th Pacific-Asian Conf. Adv. Knowl. Discov. Data Min. 2006. P. 119–128. doi: 10.1007/11731139_16
- Sander J., Qin X., Lu Z., Niu N., Kovarsky A. Automatic extraction of clusters from hierarchical clustering representations. In: Proc. 7th Pacific-Asia Conf. Knowl. Discov. DataMining. 2003. P. 75–87. doi: 10.1007/3-540-36175-8_8
- Fedorov V.A., Khruschev S.S., Kovalenko I.B. Analysis of Brownian and molecular dynamics trajectories of to reveal the mechanisms of protein-protein interactions. Computer Research and Modeling. 2023;15(3):723–738. doi: 10.20537/2076-7633-2023-15-3-723-738
- Young S., Sigfridsson K., Olesen K., Hansson Ö. The involvement of the two acidic patches of spinach plastocyanin in the reaction with photosystem I. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1997;1322(2–3):106–114. doi: 10.1016/S0005-2728(97)00064-9
|
|
|