Russian version English version
Volume 5   Issue 1   Year 2010
Kazanovich Y.B.

Temporal Correlation Theory and Modeling the Segmentation of the Visual Information in the Brain (a review)

Mathematical Biology & Bioinformatics. 2010;5(1):43-97.

doi: 10.17537/2010.5.43.


  1. Baddeley A. Exploring the central executive. Quarterly Journal of Experimental Psychology. 1996;49A:5-28. doi: 10.1080/713755608
  2. Baddeley A. Fractionating the central executive. In: Principles of Frontal Lobe Function. Eds. Stuss D and Knight RT. New York: Oxford University Press; 2002. P. 246-260. doi: 10.1093/acprof:oso/9780195134971.003.0016
  3. Borisyuk R, Kazanovich Y. Oscillatory model of attention-guided object selection and novelty detection. Neural Networks. 2004;17:899-915. doi: 10.1016/j.neunet.2004.03.005
  4. Borisyuk R, Kazanovich Y, Chik D, Tikhanoff V, Cangelosi A. A neural model of selective attention and object segmentation in the visual scene: An approach based on partial synchronization and star-like architecture of connections. Neural Networks. 2009;22:707-719. doi: 10.1016/j.neunet.2009.06.047
  5. Broussard RP, Rogers SK, Oxley ME, Tarr GL. Physiologically motivated image fusion for object detection using a pulse coupled neural network. IEEE Trans. Neural Networks. 1999;10:554-563. doi: 10.1109/72.761712
  6. Buhmann JM, Lange T, Ramacher U. Image segmentation by networks of spiking neurons. Neural Computation. 2005;17:1010-1031. doi: 10.1162/0899766053491913
  7. Caelli T, Bischof W. Machine learning and image interpretation - Plenum Press. New York; 1997.
  8. Carson C, Belongie S, Greenspan H, Malik J. Blobworld: Image segmentation using expectation-maximization and its application to image querying. IEEE Trans. Pattern Analysis and Machine Intelligence. 2002;24:1026-1038. doi: 10.1109/TPAMI.2002.1023800
  9. Chen K, Wang DL. A dynamically coupled neural oscillator networks for image segmentation. Neural Network. 2002;15:423-439. doi: 10.1016/S0893-6080(02)00028-X
  10. Chen K, Wang DL, Liu X. Weight adaptation and oscillatory correlation for image segmentation. IEEE Trans. Neural Networks. 2000;11:1106-1123.
  11. Chik D, Borisyuk R, Kazanovich Y. Selective attention model with spiking elements. Neural Networks. 2009;22:890-900. doi: 10.1016/j.neunet.2009.02.002
  12. Choe Y, Miikkulainen R. Self-organization and segmentation in a laterally connected orientation map of spiking neurons. Neurocomputing. 1998;21:139-57. doi: 10.1016/S0925-2312(98)00040-X
  13. Choe Y, Miikkulainen R. Contour integration and segmentation with self-organized lateral connections. Biol. Cybern. 2004;90:75-88. doi: 10.1007/s00422-003-0435-5
  14. Cowan N. Evolving conceptions of memory storage, selective attention and their mutual constraints within the human information processing system. Psychological Bulletin. 1988;104:163-191. doi: 10.1037/0033-2909.104.2.163
  15. Doesburg SM, Roggeveen AB, Kitajo K, Ward LM. Large-scale gamma-band phase synchronization and selective attention. Cerebral Cortex. 2008;18:386-396. doi: 10.1093/cercor/bhm073
  16. Eckhorn R, Bauer R, Jordon W, Brosch M, Kruse W, Munk M, Reitboeck HJ. Coherent oscillations: a mechanism of feature linking in the visual cortex. Biol. Cybern. 1988;60:121-130. doi: 10.1007/BF00202899
  17. Eckhorn R, Reitboeck HJ, Amdt M, Dicke P. Feature linking via synchronization among distributed assemblies: Simulation of results for cat visual cortex. Neural Computation. 1990;2:293-307. doi: 10.1162/neco.1990.2.3.293
  18. Engel A, König P, Singer W. Direct physiological evidence for scene segmentation by temporal coding. Proc. Natl. Acad. Sci. (USA). 1991;88:9136-9140. doi: 10.1073/pnas.88.20.9136
  19. Fries P, Reynolds J, Rorie A, Desimone R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science. 2001;291:1560-1563. doi: 10.1126/science.1055465
  20. Fries P, Schroeder J-H, Roelfsema PR, Singer W, Engel AK. Oscillatory neural synchronization in primary visual cortex as a correlate of stimulus selection. J. Neurosci. 2002;22:3739-3754.
  21. Gray CM. Synchronous oscillations in neural systems: Mechanisms and functions. J. Comput. Neurosci. 1994;1:11-38. doi: 10.1007/BF00962716
  22. Gray CM. The temporal correlation hypothesis of visual feature integration is still alive and well. Neuron. 1999;24:31-47. doi: 10.1016/S0896-6273(00)80820-X
  23. Gray CM, Konig P, Engel AK, Singer W. Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties. Nature. 1989;388:334-337. doi: 10.1038/338334a0
  24. Gregoriou GG, Gotts SJ, Zhou H, Desimone R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science. 2009;324:1207-1210. doi: 10.1126/science.1171402
  25. Haralick RM, Shapiro LG. Image segmentation techniques. Computer Vision, Graphics and Image Processing. 1985;29:100-132. doi: 10.1016/S0734-189X(85)90153-7
  26. Herrman CS, Munk MHJ, Engel AK. Cognitive functions of gamma-band activity: memory match and utilization. Trends in Cognitive Sciences. 2004;8:347-355. doi: 10.1016/j.tics.2004.06.006
  27. Itti L, Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research. 2000;40:1489-506. doi: 10.1016/S0042-6989(99)00163-7
  28. Itti L, Koch C. Computational modeling of visual attention. Nature Reviews Neuroscience. 2001;2:194-203. doi: 10.1038/35058500
  29. Jin Y, Angelini E, Laine A. Wavelets in Medical Image Processing: Denoising, Segmentation, and Registration. In: Handbook of Biomedical Image Analysis. Vol. 1, Segmentation models, part A. Eds. Suri J.S., Wilson D.L., Laxminarayan S. Springer; 2005. P. 305-358 (Topics in Biomedical Engineering. International Book Series).
  30. Jutras MJ, Gamma-band synchronization in the macaque hippocampus and memory formation. J. Neurosci. 2009;29:12521-12531. doi: 10.1523/JNEUROSCI.0640-09.2009
  31. Kaneko K. Clustering, coding switching, hierarchical ordering, and coding in a network of chaotic elements. Physica D. 1990;41:137-72. doi: 10.1016/0167-2789(90)90119-A
  32. Kapadia MK, Ito M, Gilbert CD, Westheimer G. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron. 1995;15:843-56. doi: 10.1016/0896-6273(95)90175-2
  33. Kazanovich Y, Borisyuk R. Object selection by an oscillatory neural network. BioSystems. 2002;67:103-111. doi: 10.1016/S0303-2647(02)00068-0
  34. Klein R. Inhibitory tagging system facilitates visual search. Nature. 1988;334:430-431. doi: 10.1038/334430a0
  35. Knoblauch A, Palm G. Pattern separation and synchronization in spiking associative memories and visual areas. Neural Networks. 2001;14:763-780. doi: 10.1016/S0893-6080(01)00084-3
  36. Knoblauch A, Palm G. Scene segmentation by spike synchronization in reciprocally connected visual areas. I. Local effects of cortical feedback. Biol. Cybern. 2002;87:151-167.
  37. Knoblauch A, Palm G. Scene segmentation by spike synchronization in reciprocally connected visual areas. II. Global assemblies and synchronization on larger space and time scales. Biol. Cybern. 2002;87:168-184.
  38. Kryukov VI. An attention model based on the principle of dominanta. In: Neurocomputers and attention I:neurobiology, synchronisation and chaos. Eds. Holden AV, Kryukov VI. Manchester: Univ. Press; 1991. P. 319-351.
  39. Kuzmina M, Manykin E, Surina I. Oscillatory networks with self-organized dynamical connections for synchronization-based image segmentation. BioSystems. 2004;76:43-53. doi: 10.1016/j.biosystems.2004.05.005
  40. Labbi A, Milanese R, Bosch H. Visual object segmentation using FitzHugh-Nagumo oscillators. Nonlinear Analysis. Theory, Methods & Applications. 2001;47:5827-5838. doi: 10.1016/S0362-546X(01)00708-8
  41. Li Z. A neural model of contour integration in the primary visual cortex. Neural Computation. 1998;10:903-940. doi: 10.1162/089976698300017557
  42. Li Z. Visual segmentation by contextual influences via intra-cortical interactions in the primary visual cortex. Network. 1999;10:187-212. doi: 10.1088/0954-898X/10/2/305
  43. Li Z. Pre-attentive segmentation in the primary visual cortex. Spatial Vision. 2000;13:25-50. doi: 10.1163/156856800741009
  44. Li Z. Computational design and nonlinear dynamics of a recurrent network model of the primary visual cortex. Neural Computation. 2001;13:1749-1780. doi: 10.1162/08997660152469332
  45. Li J, Gray RM. Image Segmentation and Compression Using Hidden Markov Models. In: The International Series in Engineering and Computer Science. Klawer Academic Publishers; 2000.
  46. Lindblad T, Kinser JM. Image processing using pulse-coupled neural networks. 2nd ed. Springer-Verlag, 2005.
  47. Malsburg C. von der. The correlation theory of brain function. Internal report 81-2, Max-Plank Institute for Biophysical Chemistry, 1981. In: Models of Neural Networks. Eds. Domany E, van Hemmen JL, Schulten K. New York: Springer; 1994. P. 95-119. doi: 10.1007/978-1-4612-4320-5_2
  48. Miltner W, Braun C, Arnold M, Witte H, Taub E. Coherence of gamma-band EEG activity as a basis for associative learning. Nature. 1999;397:434-436. doi: 10.1038/17126
  49. Mirollo RE, Strogatz SH. Synchronization of pulse-coupled biological oscillators. SIAM J. Applied Mathematics. 1990;50:1645-1662.
  50. Moran J, Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science. 1985;229:782-784. doi: 10.1126/science.4023713
  51. Neurobiology of Attention. Eds. Itti G, Rees G, Tsotsos JK. Amsterdam: Elsevier; 2005.
  52. Opara R, Wörgötter F. Using visual latencies to improve image segmentation. Neural Computation. 1996;8:1493-1520. doi: 10.1162/neco.1996.8.7.1493
  53. Opara R, Wörgötter F. A fast and robust cluster update algorithm for image segmentation in spine-lattice models without annealing - Visual latencies revisited. Neural Computation, 1998;10:1547-1566. doi: 10.1162/089976698300017304
  54. Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognition. 1993;26:1277-1294. doi: 10.1016/0031-3203(93)90135-J
  55. Palm G, Knoblauch A. Scene segmentation through synchronization. In: Neurobiology of Attention. Eds. Itti L, Rees G and Tsotsos J.. San Diego, CA: Elsevier; 2005. P. 618-623. doi: 10.1016/B978-012375731-9/50105-1
  56. Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annual Review of Biomedical Engineering. 2000;2:315-337. doi: 10.1146/annurev.bioeng.2.1.315
  57. Polakowski W, Rogers S, Ruck D, Hoffmeister J, Raines R. Computer aided breast cancer detection and diagnosis of masses using difference of gaussians and derivative-based feature saliency. IEEE Trans. Med. Imag. 1997;16:811-819.
  58. Reynolds J, Desimone R. The role of neural mechanisms of attention in solving the binding problem. Neuron. 1999;24:19-29. doi: 10.1016/S0896-6273(00)80819-3
  59. Rhouma MBH, Frigui H. Self-organization of pulsed-coupled oscillators with application to clustering. IEEE Trans. Pattern Analysis and Machine Intelligence. 2001;23:180-195. doi: 10.1109/34.908968
  60. Rogers SK, Colombi JM, Martin CE, Gainey JC, Fielding KH, Burns TJ, Ruck DW, Kabrisky M, Oxley M. Neural networks for automatic target recognition. IEEE Trans. Neural Networks. 1995;8:1153-1184. doi: 10.1016/0893-6080(95)00050-X
  61. Rutishauser U, Ross IB, Mamelak AN, Schuman EM. Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature. 2010;464:903-907. doi: 10.1038/nature08860
  62. Sauseng P, Klimesch W, Gruber WR, Birbaumer N. Cross-frequency phase synchronization: a brain mechanism of memory matching and attention. Neuroimage. 2008;40:308-317. doi: 10.1016/j.neuroimage.2007.11.032
  63. Schillen TB, König P. Binding by temporal structure in multiple feature domains of an oscillatory neural network. Biol. Cybern. 1994;70:397-405. doi: 10.1007/BF00203232
  64. Sederberg PB, Kahana MJ, Howard MW, Donner EJ, Madsen JR. Theta and gamma oscillations during encoding predict subsequent recall. J. Neurosci. 2003;23:10809-10814.
  65. Shapiro LG, Stockman GC. Computer Vision. New Jersey: Prentice-Hall; 2001.
  66. Sharon B, Galun M, Sharon D, Bash R, Brandt A. Hierarchy and adaptivity in segmenting visual scenes. Nature. 2006;442:810-813. doi: 10.1038/nature04977
  67. Singer W. Neuronal synchrony: A versatile code for the definition of relations. Neuron. 1999;24:49-65. doi: 10.1016/S0896-6273(00)80821-1
  68. Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Ann. Rev. Neurosci. 1995;18:555-586.
  69. Steinmetz PN, Roy A, Fitzgerald P, Hsiao SS, Johnson KO, Niebur E. Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature. 2000;404:187-190. doi: 10.1038/35004588
  70. Strogatz S. Nonlinear Dynamics and Chaos. Perseus Publishing; 2000.
  71. Ursino M, La Cara GE. Modeling segmentation of a visual scene via neural oscillators: fragmentation, discovery of details and attention. Network. 2004;15:69-89. doi: 10.1088/0954-898X/15/2/001
  72. Ursino M, La Cara GE, Sarti A. Binding and segmentation of multiple objects through neural oscillators inhibited by contour information. Biol. Cybern. 2003;89:56-70.
  73. Verschure P, König P. On the role of biophysical properties of cortical neurons in binding and segmentation of visual scenes. Neural Computation. 1999;11:1113-1138. doi: 10.1162/089976699300016377
  74. Wang DL. The time dimension for scene analysis. IEEE Trans. Neural Networks. 2005;16:1401-1426. doi: 10.1109/TNN.2005.852235
  75. Wang DL, Terman D. Locally excitatory globally inhibitory oscillator network. IEEE Trans. Neural Networks. 1995;6:283-286.
  76. Wang DL, Terman D. Image segmentation based on oscillatory correlation. Neural Computation. 1997;9:805-836. doi: 10.1162/neco.1997.9.4.805
  77. Weickert J. A review of nonlinear diffusion filtering. In: Scale-space theory in computer vision. Eds. Romany B, Florack L, Koenderick J, Viergever M. Berlin: Springer; 1997. P. 3-28.
  78. Wikipedia-Segmentation: image processing. (accessed 28 June 2010).
  79. Willshaw D, Buneman O, Longuet-Higgins H. Non-holographic associative memory. Nature. 1969;222:960-962. doi: 10.1038/222960a0
  80. Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P. Modulation of neuronal interactions through neuronal synchronization. Science. 2007;316:1609-1612. doi: 10.1126/science.1139597
  81. Yu B, Zhang L. Pulse-coupled neural networks for contour and motion matching. IEEE Trans. Neural Networks. 2004;15:1186-1201. doi: 10.1109/TNN.2004.832830
  82. Zhang A. A survey on evaluation methods for image segmentation. Pattern Recognition. 1996;29:1235-1346. doi: 10.1016/0031-3203(95)00169-7
  83. Zhao L, de Carvalho A, Li Z. Pixel clustering by adaptive pixel moving and chaotic synchronization. IEEE Trans. on Neural Networks. 2004;15:1176- 1185. doi: 10.1109/TNN.2004.832726
  84. Zhao L, Furukawa RA, de Carvalho A. A network of coupled chaotic maps for adaptive multy-scale image segmentation. Int. J. Neural Systems. 2003;13:129-137. doi: 10.1142/S0129065703001522
  85. Zhao L, Macau E. A network of dynamically coupled chaotic maps for scene segmentation. IEEE Trans. on Neural Networks. 2001;12:1375-1385.
  86. Zhu SC, Yuille Y. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1996;18:884-900. doi: 10.1109/34.537343
  87. Abarbanel HD, Rabinovich MI, Selverston A, Bazhenov MV, Huerta R, Sushchik MM, Rubchinskii LL. Synchronisation in neural networks. Phys. Usp. 1996;39:337-362. doi: 10.1070/PU1996v039n04ABEH000141
  88. Borisyuk GN, Borisyuk RM, Kazanovich YaB, Ivanitskii GR. Models of neural dynamics in brain information processing - the developments of 'the decade'. Phys. Usp. 2002;45:1073-1095. doi: 10.1070/PU2002v045n10ABEH001143
  89. Vezhnevets A, Barinova O. Komp'iuternaia grafika i mul'timedia: setevoi zhurnal (Computer Graphics and Multimedia Online Journal). (accessed 28 June 2010) (in Russ.).
  90. Grichuk S, Kuz'mina MG, Manykin EA. In: Neiroinformatika-2007: IX Vserossiiskaia nauchno-tekhnicheskaia konferentsiia (Neuroinformatics 2007: the IXth All-Russian Scientific and Technical Conference). Moscow; 2007. P. 235-244 (in Russ.).
  91. Grichuk S, Kuz'mina MG, Manykin EA. In: Neiroinformatika-2009: XI Vserossiiskaia nauchno-tekhnicheskaia konferentsiia (Neuroinformatics 2009: the XIth All-Russian Scientific and Technical Conference) Moscow; 2009. P. 167-172 (in Russ.).
  92. Kazanovich IaB, Shmatchenko VV. In: Neiroinformatika-2004: VI Vserossiiskaia nauchno-tekhnicheskaia konferentsiia. Lektsii po neiroinformatike (Neuroinformatics 2004: the VIth All-Russian Scientific and Technical Conference. Lectures on Neuroinformatics). Moscow; 2004. P. 72-125 (in Russ.).
  93. Kryukov VI. A Model of Attention and Memory Based on the Principle of the Dominant and the Comparator Function of the Hippocampus. Neuroscience and Behavioral Physiology. 2005;35(3):235-252. doi: 10.1007/s11055-005-0049-6
  94. Kuz'mina MG, Manykin EA. In: Neiroinformatika-2004: VII Vserossiiskaia nauchno-tekhnicheskaia konferentsiia (Neuroinformatics 2004: the VIIth All-Russian Scientific and Technical Conference). Moscow; 2004. P. 262-268 (in Russ.).
  95. Chick D, Borisyuk RM, Kazanovich YB. Synchronization in a Neural Network of Hodgkin-Huxley Neurons with a Central Element. Mathematical Biology and Bioinformatics. 2008;3(1):16-35 (in Russ.). doi: 10.17537/2008.3.16
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2010.5.43
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024