Russian version English version
Volume 18   Issue 2   Year 2023
Medvedev A.E.1,2, Erokhin A.D.1

Mathematical Analysis of Aortic Deformation in Aneurysm and Wall Dissection

Mathematical Biology & Bioinformatics. 2023;18(2):464-478.

doi: 10.17537/2023.18.464.


  1. Melissano G. Aortic dissection: Patients true stories and the innovations that saved their lives. Milan, Italy: Edi. Ermes, 2016. P. 439.
  2. Razumova E.T., Lusov V.A., Kokorin V.A. Aortic dislayering. Russian Journal of Cardiology. 2001;31(5):88–94 (in Russ.).
  3. Zorrilla R., Soudah E., Rossi R. Computational modeling of the fluid flow in type B aortic dissection using a modified finite element embedded formulation. Biomechanics and Modeling in Mechanobiology. 2020;19:1565–1583. doi: 10.1007/s10237-020-01291-x
  4. Medvedev A.E. Construction of complex three-dimensional structures of the aorta of a particular patient using finite analytical formulas. Mathematical Biology and Bioinformatics. 2022;17(S):t30–t41. doi: 10.17537/2022.17.t30
  5. Mistelbauer G., Rössl C., Bäumler K., Preim B., Fleischmann D. Implicit modeling of patient-specific aortic dissections with elliptic Fourier descriptors. Computer Graphics Forum. 2021;40:423–434. doi: 10.1111/cgf.14318
  6. Jadaun V., Nitin R.S. An application of soliton solutions of a differential equation in the progression of aortic dissection. Mathematical Methods in the Applied Sciences. 2023. doi: 10.1002/mma.9565
  7. Emerel L., Thunes J., Kickliter T., Billaud M., Phillippi J.A., Vorp D.A., Maiti S., Gleason T.G. Predissection-derived geometric and distensibility indices reveal increased peak longitudinal stress and stiffness in patients sustaining acute type A aortic dissection: Implications for predicting dissection. The Journal of Thoracic and Cardiovascular Surgery. 2018;158(2):355–363. doi: 10.1016/j.jtcvs.2018.10.116
  8. Lipovka A.I., Karpenko A.A., Chupakhin1 A.P., Parshin D.V. Strength properties of abdominal aortic vessels: Experimental results and perspectives. Journal of Applied Mechanics and Technical Physics. 2022;63(2):251–258. doi: 10.1134/S0021894422020080
  9. Carew T.E., Vaishnav R.N., Patel D.J. Compressibility of the arterial wall. Circulation Research. 1968;23(1):61–68. doi: 10.1161/01.RES.23.1.61
  10. Skacel P., Bursa J. Compressibility of arterial wall – Direct measurement and predictions of compressible constitutive models. Journal of the Mechanical Behavior of Biomedical Materials. 2019;90:538–546. doi: 10.1016/j.jmbbm.2018.11.004
  11. Peterson L.H., Jensen R.E., Parnell J. Mechanical properties of arteries in vivo. Circulation Research. 1960;8(3):622–639. doi: 10.1161/01.RES.8.3.622
  12. Skacel P., Bursa J. Poisson's ratio and compressibility of arterial wall – Improved experimental data reject auxetic behaviour. Journal of the Mechanical Behavior of Biomedical Materials. 2022;131. Article No. 105229. doi: 10.1016/j.jmbbm.2022.105229
  13. Meyers M.A., Chawla K.K. Mechanical Behavior of Materials. Cambridge University Press, 2008: 856. doi: 10.1017/CBO9780511810947
  14. Chuong C., Fung Y. Three-dimensional stress distribution in arteries. Journal of Biomechanical Engineering. 1983;105(3):268–274. doi: 10.1115/1.3138417
  15. Bagayev S.N., Zakharov V.N., Markel A.L., Medvedev A.E., Orlov V.A., Samsonov V.I., Fomin V.M. Optimal structure of arterial vessel walls. Doklady Physics. 2004;49(9):530–533. doi: 10.1134/1.1810580
  16. Medvedev A.E., Samsonov V.I., Fomin V.M. Rational structure of blood vessels. Journal of Applied Mechanics and Technical Physics. 2006;47(3):324–329. doi: 10.1007/s10808-006-0059-3
  17. Baek S., Gleason R.L., Rajagopal K.R., Humphrey J.D. Theory of small on large: potential utility in computations of fluid-solid interactions in arteries. Computer Methods in Applied Mechanics and Engineering. 2007;196(31–32):3070–3078. doi: 10.1016/j.cma.2006.06.018
  18. Ferruzzi J., Vorp D.A., Humphrey J.D. On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms. Journal of the Royal Society Interface. 2011;8(56):435–450. doi: 10.1098/rsif.2010.0299
  19. Amabili M., Karazis K., Mongrain R., Païdoussis M.P., Cartier R. A three-layer model for buckling of a human aortic segment under specific flow-pressure conditions. International Journal for Numerical Methods in Biomedical Engineering. 2012;28(5):495–512. doi: 10.1002/cnm.1484
  20. Holzapfel G.A., Gasser T.C., Ogden R.W. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity and the Physical Science of Solids. 2000;61(1):1–48. doi: 10.1023/A:1010835316564
  21. Holzapfel G.A., Gasser T.C., Stadler M. A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis. European Journal of Mechanics, A/Solids. 2002;21(3):441–463. doi: 10.1016/S0997-7538(01)01206-2
  22. Holzapfel G.A., Sommer G., Gasser C.T., Regitnig P. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. American Journal of Physiology-Heart and Circulatory Physiology. 2005;289(5):H2048–H2058. doi: 10.1152/ajpheart.00934.2004
  23. Gasser T.C., Ogden R.W., Holzapfel G.A. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society Interface. 2006;3(6):15–35. doi: 10.1098/rsif.2005.0073
  24. Nemavhola F., Pandelani T., Ngwangwa H. Fitting of hyperelastic constitutive models in different sheep heart regions based on biaxial mechanical tests. Russian journal of biomechanics. 2022;2:19–30. doi: 10.15593/RZhBiomeh/2022.2.02
  25. Giudici A., Khir A.W., Szafron J.M., Spronck B. From uniaxial testing of isolated layers to a tri-layered arterial wall: A novel constitutive modelling framework. Annals of Biomedical Engineering. 2021;49(9):2454–2467. doi: 10.1007/s10439-021-02775-2
  26. Kozlov V.A., Nazarov S.A. Asymptotic models of anisotropic heterogeneous elastic walls of blood vessels. Journal of Mathematical Sciences. 2016;213(4):561–581. doi: 10.1007/s10958-016-2725-1
  27. Chuong C.J., Fung Y.C. Three-dimensional stress distribution in arteries. Journal of Biomechanical Engineering. 1983;105(3):268–274. doi: 10.1115/1.3138417
  28. Choi H.S., Vito R. Two-dimensional stress-strain relationship for canine pericardium. Journal of Biomechanical Engineering. 1990;112(2):153–159. doi: 10.1115/1.2891166
  29. Ngwangwa H., Pandelani T. Msibi M., Mabuda I., Semakane L., Nemavhola F. Biomechanical analysis of sheep oesophagus subjected to biaxial testing including hyperelastic constitutive model fitting. Heliyon. 2012;8(5):1–10. doi: 10.1016/j.heliyon.2022.e09312
  30. Roy D., Kauffmann C., Delorme S., Lerouge S., Cloutier G., Soulez G. A literature review of the numerical analysis of abdominal aortic aneurysms treated with endovascular stent grafts. Computational and Mathematical Methods in Medicine. 2012;2012(820389):1–16. doi: 10.1155/2012/820389
  31. Raghavan M.L., Webster M.W., Vorp D.A. Ex vivo biomechanical behavior of abdominal aortic aneurysm: Assessment using a new mathematical model. Annals of Biomedical Engineering. 1996;24(5):573–582. doi: 10.1007/BF02684226
  32. Skripachenko K.K., Golyadkina A.A., Morozov K.M., Chelnokova N.O., Ostrovsky N.V., Kossovich L.Y. Biomechanical patient-oriented analysis of influence of the aneurysm on the hemodynamics of the thoracic aorta. Russian Journal of Biomechanics. 2019;23(4):526–536. doi: 10.15593/RZhBiomeh/2019.4.03
  33. Shi Y., Zhu M., Chang Y., Qiao H., Liu Y. The risk of stanford type-A aortic dissection with different tear size and location: a numerical study. BioMedical Engineering OnLine. 2016;15(128):531–544. doi: 10.1186/s12938-016-0258-y
  34. Li Z.Y., U-King-Im J., Tang T.Y., Soh E., See T.C., Gillard J.H. Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. Journal of Vascular Surgery. 2008;47(5):928–935. doi: 10.1016/j.jvs.2008.01.006
  35. Kumara J., Faye A. Prediction of failure envelope of calcified aneurysmatic tissue. Procedia Structural Integrity. 2022;42:806–812. doi: 10.1016/j.prostr.2022.12.102
  36. Wang L., Roper S.M., Hill N.A., Luo X. Propagation of dissection in a residually-stressed artery model. Biomechanics and Modeling in Mechanobiology. 2017;16:139–149. doi: 10.1007/s10237-016-0806-1
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2023.18.464
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References Translation into English
Math. Biol. Bioinf.
2023, 18(Suppl):t94-t106
doi: 10.17537/2023.18.t94

Full text (eng., pdf)


  Copyright IMPB RAS © 2005-2024