Russian version English version
Volume 18   Issue 2   Year 2023
Leonenko V.N.1,2, Korzin A.I.1, Danilenko D.M.2

Application of Mathematical Models of the Dynamics of the Epidemic Acute Respiratory Viral Infections to Increase the Efficiency of Epidemiological Surveillance

Mathematical Biology & Bioinformatics. 2023;18(2):517-542.

doi: 10.17537/2023.18.517.


  1. Huaman I., Plesovskaya E.P., Leonenko V.N. Matching model complexity with data detail: influenza propagation modeling as a case study. In: 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE, 2022. P. 650-654. doi: 10.1109/SIBIRCON56155.2022.10017084
  2. Sahatova K., Kharlunin A., Huaman I., Leonenko V. Accounting for Data Uncertainty in Modeling Acute Respiratory Infections: Influenza in Saint Petersburg as a Case Study. In: International Conference on Computational Science. Cham : Springer Nature Switzerland, 2023. P. 286-299. doi: 10.1007/978-3-031-36024-4_23
  3. Cauchemez S., Valleron A.-J., Boelle P.-Y., Flahault A., Ferguson N.M. Estimating the impact of school closure on influenza transmission from Sentinel data. Nature. 2008;452(7188):750-754. doi: 10.1038/nature06732
  4. Bajardi P., Poletto C., Ramasco J.J., Tizzoni M., Colizza V., Vespignani A. Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic. PloS one. 2011;6(1). Article No. e16591. doi: 10.1371/journal.pone.0016591
  5. Read J.M. Bridgen J.R.E. Cummings D.A.T., Ho A., Jewell C.P. Novel coronavirus 2019-nCoV (COVID-19): early estimation of epidemiological parameters and epidemic size estimates. Philosophical Transactions of the Royal Society B. 2021;376(1829). Article No. 20200265. doi: 10.1098/rstb.2020.0265
  6. Maier B.F., Brockmann D. Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science. 2020;368(6492):742-746. doi: 10.1126/science.abb4557
  7. Kumar S., Grefenstette J.J., Galloway D., Albert S.M., Burke D.S. Policies to reduce influenza in the workplace: impact assessments using an agent-based model. American journal of public health. 2013;103(8):1406-1411. doi: 10.2105/AJPH.2013.301269
  8. Lukens S., DePasse J., Rosenfeld R., Ghedin E., Mochan E., Brown S.T., Grefenstette J., Burke D.S., Swigon D., Clermont G. A large-scale immuno-epidemiological simulation of influenza A epidemics. BMC public health. 2014;14:1-15. doi: 10.1186/1471-2458-14-1019
  9. Guo D., Li K.C., Peters T.R., Snively B.M., Poehling K. A., Zhou X. Multi-scale modeling for the transmission of influenza and the evaluation of interventions toward it. Scientific reports. 2015;5(1). Article No. 8980. doi: 10.1038/srep08980
  10. Hoertel N., Blachier M., Blanco C., Olfson M., Massetti M., Limosin F., Leleu H. Facing the COVID-19 epidemic in NYC: a stochastic agent-based model of various intervention strategies. MedRxiv. 2020. doi: 10.1101/2020.04.23.20076885
  11. Viboud C., Vespignani A. The future of influenza forecasts. Proceedings of the National Academy of Sciences. 2019;116(8):2802-2804. doi: 10.1073/pnas.1822167116
  12. Arora P., Kumar H., Panigrahi B. K. Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India. Chaos, solitons & fractals. 2020;139:110017. doi: 10.1016/j.chaos.2020.110017
  13. FRED. U.S. Measles Simulator. (accessed 29 November 2023).
  14. Matematicheskoe modelirovanie rasprostraneniia infektsionnykh zabolevanii (Mathematical modeling of the spread of infectious diseases). (accessed 29 November 2023) (in Russ.).
  15. OpenAI. Epidemic Calculator. (accessed 29 November 2023).
  16. Levashkin P.P. Informatsionnoe obshchestvo (Information society). 2023;3:55-68 (in Russ.). doi: 10.52605/16059921_2023_03_55
  17. Kouprianov A. Monitoring COVID-19 epidemic in St. Petersburg, Russia: Data and scripts.. (accessed 29 November 2023).
  18. Huaman I., Leonenko V. Does Complex Mean Accurate: Comparing COVID-19 Propagation Models with Different Structural Complexity. In: International Conference on Computational Science. Cham: Springer Nature Switzerland, 2023. P. 270-277. doi: 10.1007/978-3-031-36024-4_21
  19. Harko T., Lobo F.S.N., Mak M.K. Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates. Applied Mathematics and Computation. 2014;236:184-194. doi: 10.1016/j.amc.2014.03.030
  20. Baroian O.V., Rvachev L.A., Ivannikov Iu.G. Modelirovanie i prognozirovanie epidemii grippa dlia territorii SSSR (Modeling and forecasting of influenza epidemics for the territory of the USSR). Moscow: Institute of Epidemiology and Microbiology named after. N.F. Gamaleya Academy of Medical Sciences of the USSR, 1977. 546 p. (in Russ.).
  21. Leonenko V., Bobashev G. Analyzing influenza outbreaks in Russia using an age-structured dynamic transmission model. Epidemics. 2019;29. Article No. 100358. doi: 10.1016/j.epidem.2019.100358
  22. Anderson R.M., May R.M. Infectious diseases of humans: dynamics and control. Oxford University Press, 1991. 757 p. doi: 10.1093/oso/9780198545996.001.0001
  23. Leonenko V.N. Herd immunity levels and multi-strain influenza epidemics in Russia: a modelling study. Russian Journal of Numerical Analysis and Mathematical Modelling. 2021;36(5):279-291. doi: 10.1515/rnam-2021-00234
  24. Hill E.M., Petrou S., Forster H., de Lusignan S., Yonova I., Keeling, M.J. Seasonal influenza: Modelling approaches to capture immunity propagation. PLoS computational biology. 2019;15(10). Article No. e1007096. doi: 10.1371/journal.pcbi.1007096
  25. Sahatova K., Kharlunin A., Leonenko V. A Novel Approach to Modeling and Visualisation of Epidemic Outbreaks: Combining Manual and Automatic Calibration. In: 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB). Novosibirsk, Russian Federation, 2023. P. 221-226. doi: 10.1109/CSGB60362.2023.10329850
  26. Federal State Budgetary Institution Research Institute of Influenza named after A.A. Smorodintsev Ministry of Health of the Russian Federation Ezhenedel'nyi biulleten' po grippu (Weekly Flu Update) (in Russ.). (accessed 29 November 2023).
  27. Selkova E.P., Grenkova T.A., Gudova N.V., Oganesyan A.S. Results on influenza and acute respiratory viral infection in the 2017–2018 epidemic seasons. Features of etiotropic therapy. RMJ. Medical Review. 2018;2(11):49-53.
  28. Ekspertnaia gruppa po meram bor'by s pandemiei COVID-19 (Expert Group on Measures to Combat the COVID-19 Pandemic): Analytical note to the Government of St. Petersburg. 26.03.2020 (in Russ.). (accessed 29 November 2023).
  29. Grimm V., Heinlein A., Klawonn A., Lanser M., Weber J. Estimating the time-dependent contact rate of SIR and SEIR models in mathematical epidemiology using physics-informed neural networks. Electronic Transactions on Numerical Analysis. 2022;56:1-27. doi: 10.1553/etna_vol56s1
  30. Arık S.Ö., Shor J., Sinha R., Yoon J., Ledsam J.R., Le L.T., Dusenberry M.W., Yoder N.C., Popendorf K., Epshteyn A. et al. A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan. NPJ digital medicine. 2021;4(1). Article No. 146. doi: 10.1038/s41746-021-00511-7
  31. PhiResearchLab. Epidemic prediction initiative. (accessed 29 November 2023).
  32. Reich N.G., Brooks L.C., Fox S.J., Kandula S., McGowan C.J., Moore E., Osthus D., Ray E.L., Tushar A., Yamana T.K. et al. A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States. Proceedings of the National Academy of Sciences. 2019;116(8):3146-3154. doi: 10.1073/pnas.1812594116
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2023.18.517
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024