Tetuev R.K., Nazipova N.N.
Statistical Model for Predicting TALEN-DNA Binding Sites Based On Moving Average
Mathematical Biology & Bioinformatics. 2023;18(2):621-645.
doi: 10.17537/2023.18.621.
References
- Bibikova M., Golic M., Golic K.G., Carroll D. Targeted Chromosomal Cleavage and Mutagenesis in Drosophila Using Zinc-Finger Nucleases. Genetics. 2002;161(3):1169–1175. doi: 10.1093/genetics/161.3.1169
- Qasim W., Zhan H., Samarasinghe S., Adams S., Amrolia P., Stafford S., Butler K., Rivat C., Wright G., Somana K. et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Science Translational Medicine. 2017;9. Article No. eaaj2013. doi: 10.1126/scitranslmed.aaj2013
- Menz J., Modrzejewski D., Hartung F., Wilhelm R., Sprink T. Genome edited crops touch the market: a view on the global development and regulatory environment. Front. Plant Sci. 2020;11. Article No. 586027. doi: 10.3389/fpls.2020.586027
- Pickar-Oliver A., Gersbach C.A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 2019;20:490–507. doi: 10.1038/s41580-019-0131-5
- Zhang B. CRISPR/Cas gene therapy. J. Cell Physiol. 2021;236:2459–2481. doi: 10.1002/jcp.30064
- Saifaldeen M., Al-Ansari D.E., Ramotar D., Aouida M. CRISPR FokI Dead Cas9 System: Principles and Applications in Genome Engineering. Cells. 2020;9(11). Article No. 2518. doi: 10.3390/cells9112518
- Gao H., Wu X., Chai J., Han Z. Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res. 2012;22:1716–1720. doi: 10.1038/cr.2012.156
- Yuan M., Ke Y., Huang R., Ma L., Yang Z., Chu Z., Xiao J., Li X., Wang S. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. eLife. 2016;5. Article No. e19605. doi: 10.7554/eLife.19605
- Moscou M.J., Bogdanove A.J. A simple cipher governs DNA recognition by TAL effectors. Science. 2009;326:1501. doi: 10.1126/science.1178817
- Yang J., Zhang Y., Yuan P., Zhou Y., Cai C., Ren Q., Wen D., Chu C., Qi H., Wei W. Complete decoding of TAL effectors for DNA recognition. Cell Res. 2014;24:628–631. doi: 10.1038/cr.2014.19
- Miller J., Zhang L., Xia D.F., Campo J.J., Ankoudinova I.V., Guschin D.Y., Babiarz J.E., Meng X., Hinkley S.J., Lam S.C. Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nat. Methods. 2015;12:465–471. doi: 10.1038/nmeth.3330
- Mak A.N.S., Bradley P., Cernadas R.A., Bogdanove A.J., Stoddard B.L. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science. 2012;335:716–719. doi: 10.1126/science.1216211
- Deng D., Yan C., Pan X., Mahfouz M., Wang J., Zhu J.-K., Shi Y., Yan N. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science. 2012;335:720–723 doi: 10.1126/science.1215670
- Streubel J., Blücher C., Landgraf A. Boch J. TAL effector RVD specificities and efficiencies. Nat. Biotechnol. 2012;30:593–595 doi: 10.1038/nbt.2304
- Becker S., Boch J. TALE and TALEN genome editing technologies. Gene and Genome Editing. 2021;2. Article No. 100007. doi: 10.1016/j.ggedit.2021.100007
- Boch J., Scholze H., Schornack S., Landgraf A., Hahn S., Kay S., Lahaye T., Nickstadt A., Bonas U. Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science. 2009;326(5959):1509–1512. doi: 10.1126/science.1178811
- Hockemeyer D., Wang H., Kiani S., Lai C.S., Gao Q., Cassady J.P., Cost G.J., Zhang L., Santiago Y., Miller J.C., et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol. 2011;29:731–734. doi: 10.1038/nbt.1927
- Guilinger J.P., Pattanayak V., Reyon D., Tsai S.Q., Sander J.D., Joung J.K., Liu D.R. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat. Methods. 2014;11(4):429–435. doi: 10.1038/nmeth.2845
- Doyle E.L., Booher N.J., Standage D.S., Voytas D.F., Brendel V.P., VanDyk J.K., Bogdanove A.J. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res. 2012;40. P. W117–W122. doi: 10.1093/nar/gks608
- Grau J., Boch J., Posch S. TALENoffer: genome-wide TALEN off-target prediction. Bioinformatics. 2013;29:2931–2932. doi: 10.1093/bioinformatics/btt501
- Cong L., Zhou R., Kuo Y.C., Cunniff M., Zhang F. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat. Commun. 2012;3. Article No. 968. doi: 10.1038/ncomms1962
- Richter A., Streubel J., Blücher C., Szurek B., Reschke M., Grau J., Boch J. A TAL effector repeat architecture for frameshift binding. Nat. Commun. 2014;5. Article No. 3447. doi: 10.1038/ncomms4447
- Sakuma T., Ochiai H., Kaneko T., Mashimo T., Tokumasu D., Sakane Y., Suzuki K., Miyamoto T., Sakamoto N., Matsuura S., Yamamoto T. Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci. Rep. 2013;3. Article No. 3379. doi: 10.1038/srep03379
- Sakuma T., Yamamoto T. Engineering Customized TALENs Using the Platinum Gate TALEN Kit. Methods Mol. Biol. 2016. V.1338:61–70. doi: 10.1007/978-1-4939-2932-0_6
- Xue J., Lu Z., Liu W., Wang S., Lu D., Wang X., He X. The genetic arms race between plant and Xanthomonas: lessons learned from TALE biology. Sci. China Life Sci. 2021;64(1):51–65. doi: 10.1007/s11427-020-1699-4
- Streubel J., Blücher C., Landgraf A., Boch J. TAL effector RVD specificities and efficiencies. Nat. Biotechnol. 2012;30:593–595. doi: 10.1038/nbt.2304
- Čermák T., Doyle E.L., Christian M., Wang L., Zhang Y., Schmidt C., Baller J.A., Somia N.V., Bogdanove A.J., Voytas D.F. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39. Article No. e82. doi: 10.1093/nar/gkr218
- Balwierz P.J., Carninci P., Daub C.O., Kawai J., Hayashizaki Y., Van Belle W., Beisel C., van Nimwegen E. Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data. Genome Biol. 2009;10. Article No. R79. doi: 10.1186/gb-2009-10-7-r79
- Bradley D., Roth G. Adaptive Thresholding using the Integral Image. Journal of Graphics GPU and Game Tools. 2007;12:13–21. doi: 10.1080/2151237X.2007.10129236
- Umer M., Herceg Z. Deciphering the epigenetic code: an overview of DNA methylation analysis methods. Antioxid Redox Signal. 2013;18:1972–1986. doi: 10.1089/ars.2012.4923
- Jabbari K., Bernardi G. Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene. 2004;333:143–149. doi: 10.1016/j.gene.2004.02.043
- Herman J.G., Graff J.R., Myohanen S., Nelkin B.D., Baylin S.B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. U.S.A. 1996;93(18):9821–9826. doi: 10.1073/pnas.93.18.9821
- Tetuev R.K., Olshevets M.M., Erman B., Atilgan C. A broken zipper model of the genome-wide TALEN off-target prediction using exponential moving average . In: Proceedings of the International Conference "Mathematical Biology and Bioinformatics". Ed. V.D. Lakhno. Vol. 6. Pushchino: IMPB RAS, 2016. P. 70–71.
- Li L., Piatek M.J., Atef A., Piatek A., Wibowo A., Fang X., Sabir J.S.M., Zhu J.-K., Mahfouz M.M. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol. Biol. 2012;78:407–416. doi: 10.1007/s11103-012-9875-4
- Fine E.J., Cradick T.J., Zhao C.L., Lin Y., Bao G. An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage. Nucleic Acids Res. 2013;42. Article No. e42. doi: 10.1093/nar/gkt1326
- Heigwer F., Kerr G., Walther N., Glaeser K., Pelz O., Breinig M., Boutros M. E-TALEN: a web tool to design TALENs for genome engineering. Nucleic Acids Res. 2013;41. Article No. e190. doi: 10.1093/nar/gkt789
- Neff K.L., Argue D.P., Ma A.C., Lee H.B., Clark K.J., Ekker S.C. Mojo Hand, a TALEN design tool for genome editing applications. BMC Bioinform. 2013;14. Article No. 1. doi: 10.1186/1471-2105-14-1
- Montague T.G., Cruz J.M., Gagnon J.A., Church G.M., Valen E. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 2014;42. P. W401–W407. doi: 10.1093/nar/gku410
- Jensen T.L., Gøtzsche C.R., Woldbye D.P.D. Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord. Front. Mol. Neurosci. 2021;14. Article No. 695937. doi: 10.3389/fnmol.2021.695937
- Kaiser J. A gentler way to tweak genes: Epigenome editing. Science. 2022;376:1034–1035. doi: 10.1126/science.add2703
- Margueron R., Reinberg D. Chromatin structure and the inheritance of epigenetic information. Nat. Rev. Genet. 2010;11:285–296. doi: 10.1038/nrg2752
- Allis C.D., Jenuwein T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016;17:487–500. doi: 10.1038/nrg.2016.59
- Nazipova N. Variety of Non-Coding RNAs in Eukaryotic Genomes. Mathematical Biology and Bioinformatics. 2021;16(2):256–298. doi: 10.17537/2021.16.256
- Cook P.R. A model for all genomes: The role of transcription factories. J. Mol. Biol. 2010;395:1–10. doi: 10.1016/j.jmb.2009.10.031
- Ueda J., Yamazaki T., Funakoshi H. Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges. International Journal of Molecular Sciences. 2023;24(5). Article No. 4778. doi: 10.3390/ijms24054778
- Baker M.P., Reynolds H.M., Lumicisi B., Bryson C.J. Immunogenicity of protein therapeutics: The key causes, consequences and challenges. Self/Nonself. 2010;1:314–322. doi: 10.4161/self.1.4.13904
- de Groote M.L., Verschure P.J., Rots M.G. Epigenetic Editing: Targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res. 2012;40:10596–10613. doi: 10.1093/nar/gks863
- Lei Y., Huang Y.H., Goodell M.A. DNA methylation and de-methylation using hybrid site-targeting proteins. Genome Biol. 2019;19. Article No. 187. doi: 10.1186/s13059-018-1566-2
- Mok B.Y., de Moraes M.H., Zeng J., Bosch D.E., Kotrys A.V., Raguram A., Hsu F., Radey M.C., Peterson S.B., Mootha V.K. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583:631–637. doi: 10.1038/s41586-020-2477-4
- Mok B.Y., Kotrys A.V., Raguram A., Huang T.P., Mootha V.K., Liu D.R. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat. Biotechnol. 2022;40:1378–1387. doi: 10.1038/s41587-022-01256-8
- Kang B.C., Bae S.J., Lee S., Lee J.S., Kim A., Lee H., Baek G., Seo H., Kim J., Kim J.-S. Chloroplast and mitochondrial DNA editing in plants. Nat. Plants. 2021;7:899–905. doi: 10.1038/s41477-021-00943-9
- Jain S., Shukla S., Yang C., Zhang M., Fatma Z., Lingamaneni M., Abesteh S., Lane S.T., Xiong X., Wang Y., et al. TALEN outperforms Cas9 in editing heterochromatin target sites. Nat. Commun. 2021;12:606–610. doi: 10.1038/s41467-020-20672-5
- Boyne A., Yang M., Pulicani S., Feola M., Tkach D., Hong R., Duclert A., Duchateau P., Juillerat A. Efficient multitool/multiplex gene engineering with TALE-BE. Front. Bioeng. Biotechnol. 2022;10. Article No. 1033669. doi: 10.3389/fbioe.2022.1033669
|
|
|