Russian version English version
Volume 5   Issue 2   Year 2010
Sobolev E.V., Tikhonov D.A., Freedman H., Truong T.N.

Application of the RISM Method to Estimate the Relative Gibbs Free Energies of 4',6-Diamidino-2-phenylindole Binding Within the Minor Groove of a DNA Along Simulation Trajectory

Mathematical Biology & Bioinformatics. 2010;5(2):98-113.

doi: 10.17537/2010.5.98.

References

  1. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE III, Debolt S, Ferguson D, Seibel G, Kollman P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computational Physics Communications. 1995;91:1-41. doi: 10.1016/0010-4655(95)00041-D
  2. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins and nucleic acids. Journal of the American Chemical Society. 1995;117:5179-5197. doi: 10.1021/ja00124a002
  3. Case DA, Darden TA, Cheatham TE, Simmerling C, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA et al. AMBER 8. San Francisco: University of California; 2004.
  4. Chandler D, Andersen HC. Optimized cluster expansions for classical fluids. II. Theory of molecular liquids. Journal of Chemical Physics. 1972;57:1930-1937.
  5. Hansen JP, McDonald IR. Theory of simple liquids. London: Academic Press; 1986.
  6. Kitao A, Hirata F, Go N. Effects of solvent on the conformation and the collective motions of a protein. 3. Free energy. Journal of Physical Chemistry. 1993;97:10231-10235. doi: 10.1021/j100141a053
  7. Imai T, Hiraoka R, Kovalenko A, Hirata F. Water molecules in a protein cavity detected by a statistical-mechanical theory. Journal of the American Chemical Society. 2005;127:15334-15335. doi: 10.1021/ja054434b
  8. Imai T, Kovalenko A, Hirata F. Partial molar volume of proteins studied by the three-dimensional reference interaction site model theory. Journal of Physical Chemistry B. 2005;109:6658-6665. doi: 10.1021/jp045667c
  9. Imai T, Kovalenko A, Hirata F. Solvation thermodynamics of protein studied by the 3D-RISM theory. Chemical Physics Letters. 2004;395:1-6. doi: 10.1016/j.cplett.2004.06.140
  10. Kinoshita M, Okamoto Y, Hirata F. Solvent effects on conformational stability of peptides: RISM analyses. Journal of Molecular Liquids. 2001;90:195-204. doi: 10.1016/S0167-7322(01)00122-2
  11. Kinoshita M, Okamoto Y, Hirata F. Peptide conformations in alcohol and water: Analyses by the reference interaction site model theory. Journal of the American Chemical Society. 2000;122:2773-2779. doi: 10.1021/ja993939x
  12. Kinoshita M, Okamoto Y, Hirata F. Analysis on conformational stability of C-peptide of ribonuclease a in water using the reference interaction site model theory and Monte Carlo simulated annealing. Journal of Chemical Physics. 1999;110:4090-4100. doi: 10.1063/1.478290
  13. Kinoshita M, Okamoto Y, Hirata F. First-principle determination of peptide conformations in solvents: Combination of Monte Carlo simulated annealing and RISM theory. Journal of the American Chemical Society. 1998;120:1855-1863. doi: 10.1021/ja972048r
  14. Svensson B, Woodward CE. Integral equation theory for proteins: Application to Ca2+ binding in Calbindin D9k. Journal of Physical Chemistry. 1995;99:1614-1618. doi: 10.1021/j100005a037
  15. Tikhonov DA, Polozov RV, Timoshenko EG, Kuznetsov YA, Gorelov AV, Dawson KA. Hydration of a B-DNA fragment in the method of atom-atom correlation functions with the reference interaction site model approximation. Journal of Chemical Physics. 1998;109:1528-1539. doi: 10.1063/1.476704
  16. Tikhonov DA. In: Komp'iutery i superkomp'iutery v biologii (Computers and Supercomputers in Biology). Eds. Lakhno VD, Ustinina MN. Moscow-Izhevsk; 2002. P. 209-233 (in Russ.).
  17. Spackova N, Cheatham III TE, Ryjacek F et al. Molecular Dynamics Simulations and Thermodynamics Analysis of DNA-Drug Complexes. Minor Groove Binding between 4',6-Diamidino-2-phenylindole and DNA Duplexes in Solution. Journal of the American Chemical Society. 2003;125:1759-1769. doi: 10.1021/ja025660d
  18. Larsen TA, Goodsell DS, Cascio D, Grzeskowiaka K, Dickersona RE. The structure of DAPI bound to DNA. Journal of Biomolecular Structure & Dynamics. 1989;7:477-491. doi: 10.1080/07391102.1989.10508505
  19. Vlieghe D, Sponer J, Meervelt LV. Crystal structure of d(GGCCAATTGG) complexed with DAPI reveals novel binding mode. Biochemistry. 1999;38:16443-16451. doi: 10.1021/bi9907882
  20. Loontiens FG, McLaughlin LW, Diekmann S, Clegg RM. Binding of hoechst 33258 and 4’,6-diamidino-2-phenylindole to self-complementary decadeoxynucleotides with modified exocyclic base substituents. Biochemistry. 1991;30(1):182-189. doi: 10.1021/bi00215a027
  21. Waring MJ, Bailly C. The influence of the exocyclic amino group characteristic of GC base pairs on molecular recognition of specific nucleotide sequences in DNA by Berenil and DAPI. Journal of Molecular Recognition. 1997;10:121-127. doi: 10.1002/(SICI)1099-1352(199705/06)10:3<121::AID-JMR356>3.0.CO;2-L
  22. Trotta E, D’Ambrosio E, Ravagnan G, Paci M. Simultaneous and different binding mechanisms of 4’,6diamidino-2-phenylindole to DNA hexamer (d(CGATCG))2. A 1H NMR study. Journal of Biological Chemistry. 1996;271:27608-27614. doi: 10.1074/jbc.271.44.27608
  23. Wilson WD, Tanious FA, Barton HJ, Jones RL, Strekowski L, Boykin DW. Binding of 4’,6-diamidino-2-phenylindole (DAPI) to GC and mixed sequences in DNA: Intercalation of a classical groove-binding molecule. Journal of the American Chemical Society. 1989;111:5008-5010. doi: 10.1021/ja00195a080
  24. Wilson WD, Tanious FA, Barton HJ, Wydra RL, Jones RL, Boykin DW, Strekowski L. The interaction of unfused polyaromatic heterocycles with DNA: Intercalation, groove-binding and bleomycin amplification. Anti-Cancer Drug Design. 1990;5(1):31-42.
  25. Honig B, Sbarp K, Yang A-S. Macroscopic Models of Aqueous Solutions: Biological and Chemical Applic. Journal of Physical Chemistry. 1993;97:1101-1109. doi: 10.1021/j100108a002
  26. Hirata F, Rossky PJ, Pettitt BM. The interionic potential of mean force in a molecular polar solvent from an extended RISM equation. Journal of Chemical Physics. 1983;78:4133-4144. doi: 10.1063/1.445090
  27. van Leeuwen JMJ, Groeneveld J, de Boer J. New method for the calculation of the pair correlation function. I. Physica. 1959;25:792-808. doi: 10.1016/0031-8914(59)90004-7
  28. Kovalenko A, Hirata F. Self-consistent description of a metal–water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model. Journal of Chemical Physics. 1999;110:10095-10112. doi: 10.1063/1.478883
  29. Kelley CT. Iterative Methods for Linear and Nonlinear Equations. SIAM; 1995. doi: 10.1137/1.9781611970944
  30. Gillan MJ. A new method of solving the liquid structure integral equations. Molecular Physics. 1979;38:1781-1794. doi: 10.1080/00268977900102861
  31. Chandler D, Singh Y, Richardson D. Excess electrons in simple fluids. I. General equilibrium theory for classical hard sphere solvents. Journal of Chemical Physics. 1984;81:1975-1982. doi: 10.1063/1.447820
  32. Singer SJ, Chandler D. Free energy functions in the extended RISM approximation. Molecular Physics. 1985;55:621-625. doi: 10.1080/00268978500101591
  33. Morita T, Hiroike K. A new approach to the theory of classical fluids. I. Progress of Theoretical Physics. 1960;23:1003-1027.
  34. Zichi DA, Rossky PA. Molecular conformational equilibria in liquids. Journal of Chemical Physics. 1985;84:1712-1723.
  35. Ten-no S. Free energy of solvation for the reference interaction site model: Critical comparison of expressions. Journal of Chemical Physics. 2001;115:3724-3731. doi: 10.1063/1.1389851
  36. Ten-no S, Iwata S. On the connection between the reference interaction site model integral equation theory and the partial wave expansion of the molecular Ornstein-Zernike equation. Journal of Chemical Physics. 1999;111:4865-4868. doi: 10.1063/1.479746
  37. Kovalenko A, Hirata F. Hydration free energy of hydrophobic solutes studied by a reference interaction site model with a repulsive bridge correction and a thermodynamic perturbation method. Journal of Chemical Physics. 2000;113:2793-2805. doi: 10.1063/1.1305885
  38. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics. 1983;79:926-935. doi: 10.1063/1.445869
Table of Contents Original Article
Math. Biol. Bioinf.
2010;5(2):98-113
doi: 10.17537/2010.5.98
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024