Russian version English version
Volume 5   Issue 2   Year 2010
Finkelstein A.V., Pereyaslavets L.B.

New Polarizable Atomic Force Fields for Calculation of Non-bonded Interactions in Explicit and Implicit Aqueous Surrounding

Mathematical Biology & Bioinformatics. 2010;5(2):138-149.

doi: 10.17537/2010.5.138.


  1. Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shah Y, Wriggers W. Atom-level characterization of structural dynamics of proteins. Science. 2010;330:341-346. doi: 10.1126/science.1187409
  2. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78:1950-1958.
  3. Warshel A, Lifson S. Consistent force field calculations. II. Crystal structures, sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes. J. Chem. Phys. 1970;53:582-594.
  4. Hagler AT, Huler E, Lifson S. Energy functions for peptides and proteins. I. Derivation of a consistent force fields including the hydrogen bond from amide crystals. J. Am. Chem. Soc. 1974;96:5319-5327.
  5. Hagler AT, Lifson S. Energy functions for peptides and proteins. II. The amide hydrogen bond and calculation of amide crystal properties. J. Am. Chem. Soc. 1974;96:5327-5335.
  6. Levitt M, Hirshberg M, Sharon R, Daggett V. Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput. Phys. Commun. 1995;91:215-231.
  7. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998;102:3586-3616.
  8. Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996;118:11225-11236.
  9. Halgren TA. Merck Molecular Force Field. I. Basis, form, parameterization and performance of MMFF94. J. Comput. Chem. 1995;17:490-519. doi: 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
  10. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general Amber force fields. J. Comput. Chem. 2004;25:1157-1174. doi: 10.1016/j.chemosphere.2004.08.026
  11. Kollman PA. Free energy calculations: Applications to chemical and biochemical phenomena. Chem. Rev. 1993;93:2395-2417. doi: 10.1021/cr00023a004
  12. Onufriev A, Bashford D, Case D. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins. 2004;55:383-394. doi: 10.1002/prot.20033
  13. Khoruzhii OV, Donchev AG, Galkin NG, Illarionov AA, Olevanov MA, Ozrin VD, Queen C, Tarasov VI. Application of a polarizable force field to calculations of relative protein-ligand binding affinities. Proc. Natl. Acad. Sci. USA. 2008;105:10378-10383. doi: 10.1073/pnas.0803847105
  14. Roux B, Simonson T. Implicit solvent models. Biophys. Chem. 1999;78:1-20.
  15. Cramer CJ, Truhlar DG. Implicit solvation models: Equilibria, structure, spectra, and dynamics. Chem. Rev. 1999;99:2161-2200.
  16. Ponder JW, Case DA. Force fields for protein simulations. Adv. Prot. Chem. 2003;66:27-85.
  17. Chothia C. Hydrophobic bonding and accessible surface area in proteins. Nature. 1974;248:338-339. doi: 10.1038/248338a0
  18. Wesson L, Eisenberg D. Atomic solvation parameters applied to molecular dynamics of proteins in solution. Prot. Sci. 1992;1:227-235.
  19. Gallicchio E, Zhang LY, Levy RM. The SGB/NP hydration free energy model based on the surface generalized Born solvent reaction field and novel nonpolar hydration free energy estimators. J. Comput. Chem. 2002;23:517-529.
  20. Simonson T. Electrostatics and dynamics of proteins. Rep. Prog. Phys. 2003;66:737-787.
  21. Baker NA. Improving implicit solvent simulations: a Poisson-centric view. Curr. Opin. Struct. Biol. 2005;15:137-143. doi: 10.1016/
  22. Shi X, Koehl P. The geometry behind numerical solvers of the poisson-boltzmann equation. Commun. Comput. Phys. 2008;3:1032-1050.
  23. Wang J, Tan C, Tan Y-H, Lu Q, Luo R. Poisson-Boltzmann solvents in molecular dynamics simulations. Commun. Comput. Phys. 2008;3:1010-1031.
  24. Still WC, Tempczyk A, Hawley RC, Hendrickson T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 1990;112:6127-6129.
  25. Ghosh A, Rapp CS, Friesner RA. Generalized Born model based on a surface integral formulation. J. Phys. Chem. B. 1998;102:10983-10990.
  26. Lide DR. CRC Handbook of chemistry and physics on CD. Boca Raton: CRC-press; 2005.
  27. Chickos JS, Acree WE Jr. Enthalpies of sublimation of organic and organometallic compounds. 1910-2001. J. Phys. Chem. Ref. Data. 2002;31:537-698.
  28. Allen FH. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Cryst. 2002;B58:380-388. doi: 10.1107/S0108768102003890
  29. Sander R. Compilation of Henry's law constants for inorganic and organic species of potential importance in environmental chemistry (Version 3) 1999. (accessed 06 September 2010).
  30. Finkelstein A, Pereyaslavets L. Atomic Force Field FFSol for Calculating Molecular Interactions in Water Environment. Molecular Biology. 2010;44(2):303-316. doi: 10.1134/S0026893310020160
  31. Landau LD, Lifshits EM. Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media). Moscow; 1982 (in Russ.).
  32. Finkelstein AV, Ptitsyn OB. Protein Physics. London - Amsterdam: Academic Press; 2002.
  33. Halgren TA, Damm W. Polarizable force fields. Curr. Opin. Struct. Biol. 2001;11:236-242.
  34. Finkelstein AV. Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding. Chem. Central J. 2007;1:21.
  35. Landau LD, Lifshits EM. Kvantovaia mekhanika, chast' I (Quantum Mechanics, Part I). 1948 (in Russ.).
  36. Bayly CI, Cieplak P, Cornell W, Kollman PA. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 1993;97:10269-10280.
  37. Cornell WD, Cieplak P, Bayly CI, Kollman PA. Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J. Am. Chem. Soc. 1993;115:9620-9631.
  38. Granovsky AA. PC GAMESS/Firefly 7.1.E. 2008. gran/gamess/index.html (accessed 06 September 2010).
  39. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA. General atomic and molecular electronic structure system. J. Comput. Chem. 1993;14:1347-1363.
  40. Wang J, Wang W, Kollman PA, Case DA. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006;25:247-260.
  41. Ewig CS, Thacher TS, Hagler AT. Derivation of Class II force fields. 7. Nonbonded force field parameters for organic compounds. J. Phys. Chem. B. 1999;103:6998-7014.
  42. Donchev AG, Galkin NG, Illarionov AA, Khoruzhii OV, Olevanov MA, Ozrin VD, Pereyaslavets LB, Tarasov VI. Assessment of performance of the general purpose polarizable force field QMPFF3 in condensed phase. J. Comput. Chem. 2008;29:1242-1249.
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2010.5.138
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024