Russian version English version
Volume 5   Issue 2   Year 2010
Ustinin M.N., Kronberg E., Filippov S.V., Sychev V.V., Sobolev E.V., Llinás R.

Kinematic Visualization of Human Magnetic Encephalography

Mathematical Biology & Bioinformatics. 2010;5(2):176-187.

doi: 10.17537/2010.5.176.


  1. Llinas R, Ribary U, Jeanmonod D, Kronberg E, Mitra P. Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proceedings of the National Academy of Sciences of the United States of America. 1999;96:15222–15227. doi: 10.1073/pnas.96.26.15222
  2. Carver FW, Fuchs A, Jantzen KJ, Kelso JAS. Spatiotemporal analysis of the neuromagnetic response to rhythmic auditory stimulation: rate dependence and transient to steady-state transition. Clinical Neurophysiology. 2002;113:1921–1931. doi: 10.1016/S1388-2457(02)00299-7
  3. Mikhailova ES, Slavutskaya AV, Konyshev VA, Pirogov YuA, Anisimov NV, Shevelev IA. Location of the Dipoles of the P1 Wave of Visual Evoked Potential in the Human Brain. Doklady Biological Sciences. 2006;409:285–289. doi: 10.1134/S0012496606040041
  4. Ustinin MN, Makhortykh SA, Molchanov AM, Ol’shevetz MM, Pankratov AN, Pankratova NM, Sukharev VI, Sychev VV. Problems of magnetic encephalography data analysis. In: Computers and supercomputers in biology. Eds. Lakhno VD and Ustinin MN. Moscow-Izhevsk: Institute of computer research; 2002:327–348 (in Russ.).
  5. Ustinin MN. Spectral-analytic methods of computational and experimental data processing: doctor thesis of physical and mathematical sciences. Pushchino; 2004 (in Russ).
  6. Lü ZL, Williamson SJ, Kaufman L. Human auditory primary and association cortex have differing lifetimes for activation traces. Brain Res. 1992;572:236–241. doi: 10.1016/0006-8993(92)90475-O
  7. Sarvas J. Basic mathematic and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 1987;32:11–22.
  8. Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal of Optimization. 1998;9:112–147. doi: 10.1137/S1052623496303470
  9. Sandwell DT. Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data. Geophysical Research Letters. 1987;2:139–142. doi: 10.1029/GL014i002p00139
  10. Herman GT, Liu HK. Three-Dimensional Display of Human Organs from Computer Tomograms. Computer Graphics and Image Processing. 1979;9(1):1–21. doi: 10.1016/0146-664X(79)90079-0
  11. Pizer SM, Fuchs H, Mosher C, Lifshitz L, Abram GD, Ramanathan S, Whitney BT, Rosenman JG, Staab EV, Chaney EL, Sherouse G. 3-D Shaded Graphics in Radiotherapy and Diagnostic Imaging. In: NCGA’86 conference proceedings. Anaheim, CA;1986. P. 107–113.
  12. Lorensen WE, Cline HE. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer Graphics. 1987;21(4). doi: 10.1145/37402.37422
  13. Cabral B, Cam N, Foran J. Accelerated Volume Rendering and Tomographic Reconstruction Using Texture Mapping Hardware. ACM Symp. on Vol. Vis. 1994.
  14. Levoy M. Display of Surfaces from Volume Data. IEEE Computer Graphics and Applications. 1988;8(3):29–37. doi: 10.1109/38.511
  15. Drebin RA, Carpenter L, Hanrahan P. Volume Rendering. SIGGRAPH Comput. Graph. 1988;22:65–74. doi: 10.1145/378456.378484
  16. Sobolev EV. Dynamical visualization of 3D data of biological experiments: master’s thesis in applied mathematics. Pushchino; 2003 (in Russ.).
  17. Maxon. .
  18. Maxon. Cinema 4D.
  19. Eyeon. Digital Fusion.
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2010.5.176
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)


  Copyright IMPB RAS © 2005-2024