Russian version English version
Volume 7   Issue 1   Year 2012
Glagolev M.V. , Sabrekov A.F.

Determination of Gas Exchange on the Border Between Ecosystem and Atmosphere: Inverse Modeling

Mathematical Biology & Bioinformatics. 2012;7(1):81-101.

doi: 10.17537/2012.7.81.

References

  1. Karelin DV, Zamolodchikov DG. Uglerodnyi obmen v kriogennykh ekosistemakh (Carbon exchange in cryogenic ecosystems). Moscow, 2008 (in Russ.).
  2. Borodulin AI, Desyatkov BD, Mahov GA, Sarmanaev SR. Meteorologiia i gidrologiia (Microbiology and gidrology). 1997;1:66-74 (in Russ.).
  3. Mikaloff Fletcher S.E., Tans P.P., Bruhwiler L., Miller J.B., Heimann M. 2004. CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios : 1. Inverse modeling of source processes. Global Biogeochem. Cycles. V. 18. GB4004. doi:10.1029/2004GB002223.
  4. IPCC (Intergovernmental Panel on Climate Change). Climate Change 2001: The Scientific Basis. Ed. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA. New York: Cambridge Univ. Press, 2001.
  5. Fiore AM, Jacob DJ, Field BD, Streets DG, Fernandes SD, Jang C. Linking ozone pollution and climate change: The case for controlling methane. Geophys. Res. Lett. 2002;29(19). 1919. doi: 10.1029/2002GL015601.
  6. Jones RL, Pyle JA. Observations of CH4 and N2O by the Nimbus 7 SAMS: A comparison with in situ data and two-dimensional numerical model calculations. J. Geophys. Res. 1984;89:5263-5279.
  7. Zavarzin GA. Lektsii po prirodovedcheskoi mikrobiologii (Lectures on environmental microbiology). Moscow, 2004 (in Russ.).
  8. Denman KL. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Ed. Solomon D., White S. and Cameron A. Cambridge: Cambridge University Press, 2007;(7):499-588.
  9. Lundegärdh H. Carbon Dioxide Evolution of Soil and Crop Growth. Soil Science. 1927;23:417-453.
  10. Makarov BN. Pochvovedenie (Eurasian Soil Science). 1952;3:271-277 (in Russ.).
  11. Maksyutov S, Inoue G, Sorokin M, Nakano T, Krasnov O, Kosykh N, Mironycheva-Tokareva N, Vasiliev S. Methane fluxes from wetland in west Siberia during April-October 1998. Proceedings of the Seventh Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1998. Tsukuba: Isebu, 1999:115-124.
  12. Graf A, Weihermüller L, Huisman JA, Herbst M, Bauer J, Vereecken H. Measurement depth effects on the apparent temperature sensitivity of soil respiration in field studies. Biogeosciences. 2008;5(4):1175-1188. Available at: http://www.biogeosciences.net/5/1175/2008/bg-5-1175-2008.pdf (accessed 29 December 2010).
  13. Pape L, Ammann C, Nyfeler-Brunner A, Spirig C, Hens K, Meixner FX. An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems. Biogeosciences. 2009;6(3):405-429. Available at: http://www.biogeosciences.net/6/405/2009/bg-6-405-2009.pdf (accessed 29 December 2010).
  14. Glagolev MV, Golovatskaya EA, Shnyrev NA. Greenhouse Gas Emission in West Siberia. Contemporary problems of Ecology. 2008;1(1):136-146.
  15. Glagolev MV, Shnyrev NA. Dynamics of methane emission from natural wetlands in the summer and fall seasons (case study in the south of Tomsk oblast). Moscow university soil science bulletin. 2007;62(1):7-14.
  16. Glagolev MV. Trudy Instituta mikrobiologii imeni S.N. Vinogradskogo RAN: k 100–letiiu otkrytiia metanotrofii (Transactions of Vinogradsky Institute of Microbiology RAS: to the 100th anniversary of the opening of methanotrophy). Ed. Galchenko VF. Moscow, 2006:315-341 (in Russ.).
  17. Healy RW, Striegl RG, Ressell TF, Hutchinson GL, Livingston GP. Numerical evalution of static-chamber measurements of soil-atmosphere gas exchange: identification of physical processes. Soil Science of America Journal. 1996;60:740-747.
  18. Krasnov O, Maksyutov S, Shimoyama K, Suto H, Nadeev A, Shelevoi V, Glagolev M, Kosykh N, Machida T, Inoue G. Automatic chamber observations of methane and carbon dioxide fluxes at West Siberian wetland. American Geophysical Union (Fall Meeting 2010). 2010. Abstract #GC33A-0921. Available at: http://adsabs.harvard.edu/abs/2010AGUFMGC33A0921K (accessed 03 January 2011).
  19. Moore TR, Dalva M. The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. Journal of Soil Science. 1993; 44:651-664.
  20. Chanton JP, Whiting GJ, Happel JD, Gerard G. Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes. Aquatic Botany. 1993;46:111-128.
  21. Morrissey LA, Zobel DB, Livingston GP. Significance of stomatal control on methane release from Carex-dominated wetlands. Chemosphere. 1993;26(1-4):339-355.
  22. Glagolev M, Uchiyama H, Lebedev V, Utsumi M, Smagin A, Glagoleva O, Erohin V, Olenev P, Nozhevnikova A. Oxidation and Plant-Mediated Transport of Methane in West Siberian Bog. In: Proceedings of the Eighth Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1999. Tsukuba: Isebu, 2000:143-149.
  23. Sebacher DI, Harriss RC, Bartlett KB. Methane flux across the air-water interface: air velocity effects. Tellus. 1983;35B:103-109.
  24. Holmes ME, Sansone FJ, Rust TM, Popp BN. Methane production, consumption, and air-sea exchange in the open ocean: An evaluation based on carbon isotopic ratios. Global Biogeochemical Cycles. 2000;14(1):1-10.
  25. Kelley CA, Jeffrey WH. Dissolved methane concentration profiles and air-sea fluxes from 41°S to 27°N. Global Biogeochemical Cycles. 2002;16(3):1040. doi:10.1029/2001GB001809.
  26. Mori S, Prokushkin P, Oksana M, Kajimoto T, Zyryanova O, Abaimov AP, Koike T, Matsuura Y, Ueda R. Daytime Whole-Tree Respiration under Controlled Air Temperature Utilizing Heat of Permafrost and Wood Fire in a Siberian Larch Forest. Proceedings of the Sixth Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1997. Tsukuba: Isebu, 1998:11-17.
  27. Pelletier L, Moore TR, Roulet NT, Garneau M, Beaulieu-Audy V. Methane fluxes from three peatlands in the La Grande Riviere watershed, James Bay lowland, Canada. Journal of Geophysical Research. 2007;112:G01018. doi: 10.1029/2006JG000216.
  28. Chen H, Wu N, Gao Y, Wang Y, Luo P, Tian J. Spatial variations on methane emissions from Zoige alpine wetlands of Southwest China. Science of the total environment. 2009;407:1097-1104.
  29. Baldocchi DD, Hicks BB, Meyers TP. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology. 1988;69:1331-1340.
  30. Inoue G, Makshyutov S. Application of Conditional Sampling Eddy Flux Measurement in West Siberia Lowland. Proceedings of the Second Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1993. Tsukuba: Isebu, 1994:83-85.
  31. Setton OG. Micrometeorology. Leningrad, 1958. 9 p.
  32. Glagolev MV. Dinamika okruzhaiushchii sredy i global'nye izmeneniia klimata (Environmental Dynamics and Global Climate Change). 2010;1(1):17-36 Available at:   http://www.ugrasu.ru/uploads/files/Glagolev_k_m.pdf (accessed 2 March 2012) (in Russ.).
  33. Topp E, Pattey E. Soils as sources and sinks for atmospheric methane. Canadian Journal of Soil Science. 1997;77:167-178.
  34. Beck D, Blackwell B, Sent-Kler Ch. Inverse heat conduction: Ill-posed problems.
  35. Amosov AA, Dubinskiy YuA, Kopchenova NV. Vychislitel'nye metody dlia inzhenerov (Numerical methods for engineers). Moscow, 1994 (in Russ.).
  36. Schmidt HP. Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agricultural and Forest Meteorology. 2002;113:159-183.
  37. Soegaard H, Nordstroem C, Friborg T, Hansen BU, Christensen TR, Bay C. Trace gas exchange in a high-arctic valley. 3. Integrating and scaling CO2 fluxes from canopy to landscape using flux data, footprint modeling, and remote sensing. Global Biogeochem. Cycles. 2000;14(3):725-744.
  38. Fan SM, Wofsy SC, Bakwin PS, Jacob DJ, Anderson SM, Kebabian PL, McManus JB, Kolb CE. Micrometeorological Measurements of CH4 and CO2 Exchange Between the Atmosphere and Subarctic Tundra. Journal of Geophysical Research. 1992;97(D15):16627-16643.
  39. Simpson IJ, Edwards GC, Thhurtell GW, den Hartog G, Neumann HH, Staebler RM. Micrometeorological measurements of methane and nitrous oxide exchange above a boreal aspen forest. Journal of Geophysical Research. 1997;102(D24):29331-29341.
  40. Beswick KM, Simpson TW, Fowler D, Choularton TW, Gallagher MW, Hargreaves KJ, Sutton MA, Kaye A. Methane emissions on large scales. Atmospheric Environment. 1998;32(19):3283-3291.
  41. Kormann R, Meixner FX. An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorology. 2001;99:207-224.
  42. Kleptsova IE, Glagolev MV, Filippov IV, Maksyutov SS. Dinamika okruzhaiushchei sredy i global'nye izmeneniia klimata (Environmental Dynamics and Global Climate Change). 2010;1:56-64. Available at: http://www.ugrasu.ru/uploads/files/Klepcova_Glagolev.pdf  (accessed  2 March 2012 ) (in Russ.).
  43. Bleuten W, Filippov I. Dinamika okruzhaiushchei sredy i global'nye izmeneniia klimata (Environmental Dynamics and Global Climate Change). Novosibirsk, 2008. P. 208-224  (in Russ.).
  44. Hutchinson GL, Mosier AR. Improved soil cover method for field measurement of nitrous-oxide fluxes. Soil Sci. Soc. Am. J. 1981;45:311-316.
  45. Glagolev MV, Chistotin MV, Shnyrev NA, Sirin AA. Agrokhimiia (Agricultural chemistry). 2008;5:46-58 (in Russ.).
  46. Berland ME. Prognoz i regulirovanie zagriazneniia atmosfery (Prediction and regulation of air pollution). Leningrad, 1985 (in Russ.).
  47. Fizicheskie velichiny. Spravochnik (Physical Values. Handbook). Ed. Grigorev IS, Meylikhof EZ. Moscow, 1991 (in Russ.).
  48. Glagolev MV, Sabrekov AF, Kazancev VS. Fizikokhimiia i biologiia torfa. Metody izmereniia gazoobmena na granitse pochva–atmosfera (Physicochemical aspects of wetlands. Methods of evaluation of gas exchange at the border «soil/atmosphere»). Tomsk, 2010. (in Russ.).
  49. Zilitinkevich S, Esau I. Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layers. Boundary-Layer Meteorology. 2007;125:193-205.
  50. Zilitinkevich SS, Esau I, Kleeorin N, Rogachevskii I, Kouznetsov RD. On the Velocity Gradient in Stably Stratified Sheared Flows. Part 1: Asymptotic Analysis and Applications. Boundary-Layer Meteorology. DOI 10.1007/s10546-010-9488-x. 2010;135:505-511.
  51. Ebert C, Ederer H. Computeranwendungen in der Chemie. 1983:704.
  52. Treat CC, Bubier JL, Varner RK, Crill PM. Timescale dependence of environmental and plant-mediated controls on ΡΝ4 flux in a temperate fen. Journal of Geophysical Research. 2007;112:G01014. doi: 10.1029/2006JG000210.
  53. Skeel RD. and M. Berzins. A Method for the Spatial Discretization of Parabolic Equations in One Space Variable. SIAM Journal on Scientific and Statistical Computing. 1990;1:1-32.
  54. Himmelblau DM. Process analysis by statistical methods. 1970.
  55. Rumshiskiy LZ. Matematicheskaia obrabotka rezul'tatov eksperimenta (Mathematic processing of expirement results). Moscow, 1971 (in Russ.).
  56. Sabrekov AF. Dinamika okruzhaiushchei sredy i global'nye izmeneniia klimata (Environmental Dynamics and Global Climate Change). 2010;1(2):3-12 (in Russ.).
  57. Atmosfera (Atmosphere). Ed. Sedunov YuS. Leningrad, 1991 (in Russ.).
  58. Sabrekov AF, Kleptsova IE, Glagolev MV, Maksyutov ShSh, Machida T. Methane emission from middle taiga oligotrophic hollows of Western Siberia. Tomsk state pedagogical university bulletin. 2011;5:135-143. Available at: http://vestnik.tspu.ru/files/PDF/articles/sabrekov_a._f._135_143_5_107_2011.pdf (accessed 19 July 2011).
  59. Glagolev M, Inisheva L, Lebedev V, Naumov A, Dementeva T, Golovatskaja E, Erohin V, Shnyrev N, Nozhevnikova A. The Emission of CO2 and CH4 in Geochemically Similar Oligotrophic Landscapes of West Siberia. In: Proceedings of the Ninth Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 2000. Sapporo: Kohsoku Printing Center, 2001:12-119.
  60. Glagolev M.V. In: «Biologiia – nauka XXI veka»: 6–ia Pushchinskaia shkola–konferentsiia molodykh uchenykh (“Biology - the science of the XXI Century”: 6th Pushchino School-Conference of the Young Scientists). Tula, 2002;3:97-98 (in Russ.).
  61. Horst TW, Weil JC. How far is far enough - the fetch requirements for micrometeorological measurement of surface fluxes. J. Atmos. Oceanic Technol. 1994;11:1018-1025.

 

 

 

Table of Contents Original Article
Math. Biol. Bioinf.
2012;7(1):81-101
doi: 10.17537/2012.7.81
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024