Русская версия English version   
Том 10   Выпуск 1   Год 2015
Казанович Я.Б., Мысин И.Е.

Как животные ориентируются в пространстве? Клетки места и клетки решетки

Математическая биология и биоинформатика. 2015;10(1):88-115.

doi: 10.17537/2015.10.88.

Список литературы

  1. O’Keefe J., Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34:171-175. doi: 10.1016/0006-8993(71)90358-1
  2. O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp. Neurol. 1976;51:78-109. doi: 10.1016/0014-4886(76)90055-8
  3. Keefe J.O., Nadel L. The hippocampus as a cognitive map. Oxford: Clarendon Press; 1978.
  4. Tolman E.C. Cognitive maps in rats and men. Psychol. Rev. 1948;55:189-208. doi: 10.1037/h0061626
  5. Hafting T., Fyhn M., Molden S., Moser M.B., Moser E.I. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436:801-806. doi: 10.1038/nature03721
  6. Abbott A. Neuroscience: Brains of Norway. Nature. 2014;514:154-157. doi: 10.1038/514154a
  7. Moser E.I., Roudi Y., Witter M.P., Kentros C., Bonhoeffer T., Moser M.B. Grid cells and cortical representation. Nat. Rev. Neurosci. 2014;15:466-481. doi: 10.1038/nrn3766
  8. Taube J.S., Muller R.U., Ranck J.B. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 1990;10:420-435.
  9. Taube J.S., Muller R.U., Ranck J.B. Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 1990;10:36-447.
  10. Solstad T., Boccara C.N., Kropff E., Moser M.B., Moser E.I. Representation of geometric borders in the entorhinal cortex. Science. 2008;322:1865-1868. doi: 10.1126/science.1166466
  11. Rolls E.T., Stringer S.M. Spatial view cells in the hippocampus, and their idiothetic update based on place and head direction. Neural Netw. 2005;18:1229-1241. doi: 10.1016/j.neunet.2005.08.006
  12. Eichenbaum H. Time cells in the hippocampus: a new dimension for mapping memories. Nat. Rev. Neurosci. 2014;15:732-744. doi: 10.1038/nrn3827
  13. Yartsev M.M., Ulanovsky N. Representation of three-dimensional space in the hippocampus of flying bats. Science. 2013;340:367-372. doi: 10.1126/science.1235338
  14. Bingman V., Jechura T., Kahn M.C. Behavioral and neural mechanisms of homing and migration in birds. In: Animal Spatial Cognition: Comparative, Neural and Computational Approaches. Ed. Braun M.F., Cook R.G. 2006. http://www.pigeon.psy.tufts.edu/asc/Bingman (accessed 20 January 2015).
  15. Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities. PNAS. 1982;79:2554-2558. doi: 10.1073/pnas.79.8.2554
  16. Laureaty Nobelevskoi premii. Entsiklopediia. Moscow; 1992. 862 p. Translation of: Nobel Prize Winners: An H. W. Wilson Biographical. Hw Wilson Co; 1987.
  17. Devanand D.P., Pradhaban G., Liu X., Khandji A., De Santi S., Segal S., Rusinek H., Pelton G.H., Honig L.S., Mayeux R. et al. Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology. 2007;68:828-836. doi: 10.1212/01.wnl.0000256697.20968.d7
  18. Bachinskaia N.Iu. Zhurnal Nevrologії im B.M. Man'kovs'kogo (The Journal of Neuroscience of B.M. Mankovskyi). 2013;1:88-102 (in Russ.).
  19. Bliss T.V., Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 1973;232:331-356. doi: 10.1113/jphysiol.1973.sp010273
  20. Rizzolatti G.; Fadiga L. Fogassi L., Gallese V. Resonance behaviors and mirror neurons. Arch. Ital. Biol. 1999;137:85-100.
  21. Rizzolatti G., Fogassi L., Gallese V. Mirrors in the mind. Sci. Am. 2006;295:54-61. doi: 10.1038/scientificamerican1106-54
  22. Rolls E.T. Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. Hum. Neurobiol. 1984;3:209-222.
  23. Rolls E.T. Face neurons. In: The Oxford Handbook of Face Perception. Ed. Calder A.J., Rhodes G., Johnson M.H., Haxby J.V. Oxford: Oxford University Press; 2011. P. 51-75. doi: 10.1093/oxfordhb/9780199559053.013.0004
  24. Vinogradova O.S. Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus. 2001;11:578-598. doi: 10.1002/hipo.1073
  25. Damasio A.R. The brain binds entities and events by multiregional activation from convergence zones. Neural Comput. 1989;1:123-132. doi: 10.1162/neco.1989.1.1.123
  26. Buzsáki G., Moser E.I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 2013;16:130-138. doi: 10.1038/nn.3304
  27. Eichenbaum H., Cohen N.J. Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron. 2014;83:764-770. doi: 10.1016/j.neuron.2014.07.032
  28. Witter M.P., Moser E.I. Spatial representation and the architecture of the entorhinal cortex. Trends Neurosci. 2006;29:671-678. doi: 10.1016/j.tins.2006.10.003
  29. Burgalossi A., Brecht M. Cellular, columnar and modular organization of spatial representations in medial entorhinal cortex. Curr. Opin. Neurobiol. 2014;24:47-54. doi: 10.1016/j.conb.2013.08.011
  30. Ray S., Naumann R., Burgalossi A., Tang Q., Schmidt H., Brecht M. Grid-layout and theta-modulation of layer 2 pyramidal neurons in medial entorhinal cortex. Science. 2014;343:891-896. doi: 10.1126/science.1243028
  31. Nakazawa K., McHugh T.J., Wilson M.A., Tonegawa S. NMDA receptors, place cells and hippocampal spatial memory. Nat. Rev. Neurosci. 2004;5:361-372. doi: 10.1038/nrn1385
  32. Wilson M.A., McNaughton B.L. Dynamics of the hippocampal ensemble code for space. Science. 1993;261:1055-1058. doi: 10.1126/science.8351520
  33. Bird C.M., Burgess N. The hippocampus and memory: insights from spatial processing. Nat. Rev. Neurosci. 2008;9:182-194. doi: 10.1038/nrn2335
  34. Foster D.J., Wilson M.A. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature. 2006;440:680-683. doi: 10.1038/nature04587
  35. Louie K., Wilson M.A. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron. 2001;29:145-156. doi: 10.1016/S0896-6273(01)00186-6
  36. O’Keefe J., Recce M.L. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993;3:317-330. doi: 10.1002/hipo.450030307
  37. Skaggs W.E., McNaughton B.L. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus. 1996;6:149-172. doi: 10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K
  38. Sadowski J.H., Jones M.W., Mellor J.R. Ripples make waves: binding structured activity and plasticity in hippocampal networks. Neural Plast. 2011;2011. doi: 10.1155/2011/960389
  39. Fyhn M., Hafting T., Witter M.P., Moser E.I., Moser M.B. Grid cells in mice. Hippocampus. 2008;18:1230-1238. doi: 10.1002/hipo.20472
  40. Yartsev M.M., Witter M.P., Ulanovsky N. Grid cells without theta oscillations in the entorhinal cortex of bats. Nature. 2011;479:103-107. doi: 10.1038/nature10583
  41. Killian N.J., Jutras M.J., Buffalo E.A. A map of visual space in the primate entorhinal cortex. Nature. 2012;491:761-764.
  42. Jacobs J., Weidemann C.T., Miller J.F., Solway A., Burke J.F., Wei X.X., Suthana N., Sperling M.R., Sharan A.D., Fried I., Kahana M.J. Direct recordings of grid-like neuronal activity in human spatial navigation. Nat. Neurosci. 2013;16:1188-1190.
  43. Sargolini F., Fyhn M., Hafting T., McNaughton B.L., Witter M.P., Moser M-B., Moser E.I. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science. 2006;312:758-762. doi: 10.1126/science.1125572
  44. Zhang S.J., Ye J., Miao C., Tsao A., Cerniauskas I., Ledergerber D., Moser M.B., Moser E.I. Optogenetic dissection of entorhinal-hippocampal functional connectivity. Science. 2013;340:1232627. doi: 10.1126/science.1232627
  45. Boccara C.N., Sargolini F., Thoresen V.H., Solstad T., Witter M.P., Moser E.I., Moser M.B. Grid cells in pre- and parasubiculum. Nat. Neurosci. 2010;13:987-994.
  46. Brun V.H., Solstad T., Kjelstrup K.B., Fyhn M., Witter M.P., Moser E.I., Moser M.B. Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus. 2008;18:1200-1212. doi: 10.1002/hipo.20504
  47. Stensola H., Stensola T., Solstad T., Frøland K., Moser M.B., Moser E.I. The entorhinal grid map is discretized. Nature. 2012;492:72-78. doi: 10.1038/nature11649
  48. Heys J.G., Rangarajan K.V., Dombeck D.A. The functional micro-organization of grid cells revealed by cellular-resolution imaging neuron. Neuron. 2014;84:1079-1090. doi: 10.1016/j.neuron.2014.10.048
  49. Buzsáki G. Theta oscillations in the hippocampus. Neuron. 2002;33:325-340. doi: 10.1016/S0896-6273(02)00586-X
  50. Vinogradova O.S. Expression, control, and probable functional significance of the neuronal theta-rhythm. Prog. Neurobiol. 1995;45:523-583.
  51. Jeewajee A., Barry C., Douchamps V., Manson D., Lever C., Burgess N. Theta phase precession of grid and place cell firing in open environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015;369:20120532.
  52. Brandon M.P., Bogaard A.R., Libby C.P., Connerney M.A., Gupta K., Hasselmo M.E. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science. 2011;332:595-599. doi: 10.1126/science.1201652
  53. Newman E.L., Climer J.R., Hasselmo M.E. Grid cell spatial tuning reduced following systemic muscarinic receptor blockade. Hippocampus. 2014;24:643-655. doi: 10.1002/hipo.22253
  54. Wills T.J., Cacucci F. The development of the hippocampal neural representation of space. Curr. Opin. Neurobiol. 2014;24:111-119.
  55. Bonnevie T., Dunn B., Fyhn M., Hafting T., Derdikman D., Kubie J.L., Roudi Y., Moser E.I., Moser M.B. Grid cells require excitatory drive from the hippocampus. Nat. Neurosci. 2013;16:309-317.
  56. Redish A.D., Elga A.N., Touretzky D.S. A coupled attractor model of the rodent head direction system. Network Comput. Neural Syst. 1996;7:671-685. doi: 10.1088/0954-898X/7/4/004
  57. D’Hooge R., De Deyn P.P. Applications of the Morris water maze in the study of learning and memory. Brain Res. Rev. 2001;36:60-90.
  58. Krichmar J.L., Seth A.K., Nitz D.A., Fleischer J.G., Edelman G.M. Spatial navigation and causal analysis in a brain-based device modeling cortical-hippocampal interactions. Neuroinformatics. 2005;3:197-221. doi: 10.1385/NI:3:3:197
  59. Ponulak F., Hopfield J.J. Rapid, parallel path planning by propagating wavefronts of spiking neural activity. Front. Comput. Neurosci. 2013;7. Article No. e98.
  60. Miller J.F., Neufang M., Solway A., Brandt A., Trippel M., Mader I., Hefft S., Merkow M., Polyn S.M., Jacobs J., Kahana M.J., Schulze-Bonhage A. Neural activity in human hippocampal formation reveals the spatial context of retrieved memories. Science. 2013;342:1111-1114. doi: 10.1126/science.1244056
  61. Borisyuk R., Chik D., Kazanovich Y., da Silva Gomes J. Spiking neural network model for memorizing sequences with forward and backward recall. BioSystems. 2013;112:214-223. doi: 10.1016/j.biosystems.2013.03.018
  62. Burak Y. Spatial coding and attractor dynamics of grid cells in the entorhinal cortex. Curr. Opin. Neurobiol. 2014;25:169-175.
  63. Grossberg S., Pilly P.K. Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369:20120524.
  64. Burgess N. Grid cells and theta as oscillatory interference: Theory and predictions. Hippocampus. 2008;18:1157-1174. doi: 10.1002/hipo.20518
  65. Burgess C.P., Burgess N. Controlling phase noise in oscillatory interference models of grid cell firing. J. Neurosci. 2014;34:6224-6232.
  66. Burgess N., Barry C., O’Keefe J. An oscillatory interference model of grid cell firing. Hippocampus. 2007;17:801-812. doi: 10.1002/hipo.20327
  67. Bush D., Burgess N. A hybrid oscillatory interference/continuous attractor network model of grid cell firing. J. Neurosci. 2014;34:5065-5079. doi: 10.1523/JNEUROSCI.4017-13.2014
  68. Pilly P.K., Grossberg S. How do spatial learning and memory occur in the brain? Coordinated learning of entorhinal grid cells and hippocampal place cells. J. Cogn. Neurosci. 2012;24:1031-1054.
  69. Burak Y., Fiete I.R. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 2009;5(2). Article No. e1000291. doi: 10.1371/journal.pcbi.1000291
  70. Fuhs M.C. A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 2006;26:4266-4276. doi: 10.1523/JNEUROSCI.4353-05.2006
  71. Si B., Treves A. A model for the differentiation between grid and conjunctive units in medial entorhinal cortex. Hippocampus. 2013;23:1410-1424. doi: 10.1002/hipo.22194
  72. Si B., Kropff E., Treves A. Grid alignment in entorhinal cortex. Biol. Cybern. 2012;106:483-506.
  73. McNaughton B.L., Battaglia F.P., Jensen O., Moser E.I., Moser M.B. Path integration and the neural basis of the «cognitive map». Nat. Rev. Neurosci. 2006;7:663-678.
  74. Navratilova Z., Giocomo L.M., Fellous J.M., Hasselmo M.E., McNaughton B.L. Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics. Hippocampus. 2012;22:772-789. doi: 10.1002/hipo.20939
  75. Widloski J., Fiete I.R. A model of grid cell development through spatial exploration and spike time-dependent plasticity. Neuron. 2014;83:481-495. doi: 10.1016/j.neuron.2014.06.018
  76. Solstad T., Moser E.I., Einevoll G.T. From grid cells to place cells: A mathematical model. Hippocampus. 2006;16:1026-1031. doi: 10.1002/hipo.20244
  77. Giocomo L.M., Moser M.B., Moser E.I. Computational models of grid cells. Neuron. 2011;71:589-603. doi: 10.1016/j.neuron.2011.07.023
Содержание Оригинальная статья
Мат. биол. и биоинф.
2015;10(1):88-115
doi: 10.17537/2015.10.88
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы Перевод на англ. яз.
Мат. биол. и биоинф.
2018;13(Suppl.):t132-t161
doi: 10.17537/2018.13.t132

Полный текст (англ., pdf)

 

  Copyright ИМПБ РАН © 2005-2024