Русская версия English version   
Том 11   Выпуск 1   Год 2016
Якушевич Л.В., Балашова В.Н., Закирьянов Ф.К.

О движении кинка ДНК под действием постоянного торсионного момента

Математическая биология и биоинформатика. 2016;11(1):81-90.

doi: 10.17537/2016.11.81.

Список литературы

 

  1. Forth S., Sheinin M.Y., Inman J., Wang M.D. Torque measurement at the single-molecule level. Annu. Rev. Biophys. 2013;42:583-604. doi: 10.1146/annurev-biophys-083012-130412
  2. Bishop A.I., Nieminen T.A., Heckenberg N.R., Rubinsztein-Dunlop H. Optical application and measurement of torque on micropartic les of isotropic nonabsorbing material. Phys. Rev. A. 2003;68:033802. doi: 10.1103/PhysRevA.68.033802
  3. La Porta A., Wang M.D. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett. 2004;92:190801. doi: 10.1103/PhysRevLett.92.190801
  4. Klaue D., Seidel R. Torsional stiffness of single superparamagnetic microspheres in an external magnetic field. Phys. Rev. Lett. 2009;102:028302. doi: 10.1103/PhysRevLett.102.028302
  5. Harada Y., Ohara O., Takatsuki A., Itoh H., Shimamoto N., Kinosita K. Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature. 2001;409:113-115. doi: 10.1038/35051126
  6. Lipfert J., Kerssemakers J.W.J., Jager T., Dekker N.H. Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments. Nat. Methods. 2010;7:977-980. doi: 10.1038/nmeth.1520
  7. Watanabe-Nakayama T., Toyabe S., Kudo S., Sugiyama S., Yoshida M., Muneyuki E. Effect of external torque on the ATP-driven rotation of F1-ATPase. Biochem. Biophys. Res. Commun. 2008;366:951-957. doi: 10.1016/j.bbrc.2007.12.049
  8. Inman J., Forth S., Wang M.D. Passive torque wrench and angular position detection using a single-beam optical trap. Opt. Lett. 2010;35:2949-2951. doi: 10.1364/OL.35.002949
  9. Englander S.W., Kallenbach N.R., Heeger A.J., Krumhansl J.A., Litwin A. Proc. Natl. Acad. Sci. USA. 1980;77(12):7222-7226. doi: 10.1073/pnas.77.12.7222
  10. Cuenda S., Sánchez A. Nonlinear excitations in DNA: Aperiodic models versus actual genome sequences. Phys. Rev. E. 2004;70:051903. doi: 10.1103/PhysRevE.70.051903
  11. Barbi B., Place C., Popkov V., Salerno M. Base-sequence-dependent sliding of proteins on DNA. Phys. Rev. E. 2004;70:041901. doi: 10.1103/PhysRevE.70.041901
  12. Gaeta G. Solitons in the Yakushevich model of DNA. beyond the contact approximation. Phys. Rev. E. 2006;74:021921. doi: 10.1103/PhysRevE.74.021921
  13. González J.A., Cuenda S., Sánchez A. Kink dynamics in spatially inhomogeneous media: The role of internal modes. Phys. Rev. E. 2007;75:036611. doi: 10.1103/PhysRevE.75.036611
  14. Gaeta G., Venier L. Solitary waves in twist-opening models of DNA dynamics. Phys. Rev. E. 2008;78:011901. doi: 10.1103/PhysRevE.78.011901
  15. Cadoni M., De Leo R., Demelio S., Gaeta G. Propagation of twist solitons in real DNA chains'. J. Nonlin. Math. Phys. 2010;17:557-569. doi: 10.1142/S1402925110001069
  16. Theodorakopoulos N. Melting of genomic DNA: predictive modeling by nonlinear lattice dynamics. Phys. Rev. E. 2010;82:021905. doi: 10.1103/PhysRevE.82.021905
  17. Cuenda S., Quintero N.R., Sánchez A. Sine-Gordon wobbles through Bäcklund transformations. Discrete and Continuous Dynamical Systems – Series S. 2011;4(5):1047-1056. doi: 10.3934/dcdss.2011.4.1047
  18. Derks G., Gaeta G. A minimal model of DNA dynamics in interaction with RNA-Polymerase. Physica D. 2011;240:1805-1817. doi: 10.1016/j.physd.2011.08.005
  19. Theodorakopoulos N. Peyrard M. Base pair openings and temperature dependence of DNA flexibility. Phys. Rev. Lett. 2012;108:078104. doi: 10.1103/PhysRevLett.108.078104
  20. McLaughlin D.W., Scott A.C. Phys. Rev. A. 1978;18(4):1652-1680. doi: 10.1103/PhysRevA.18.1652
  21. Stark M. The pTTQ18 story. http://www.lifesci.dundee.ac.uk/groups/mike_stark/pttq18.htm (accessed 20 September 2015).
  22. Grinevich A.A., Yakushevich L.V. Kinks behavior near the boundaries separating homogeneous regions of DNA. Mathematical Biology and Bioinformatics. 2015;10(1):164-177. doi: 10.17537/2015.10.164
  23. Yakushevich L.V., Krasnobaeva L.A., Shapovalov A.V., Quintero N.R. One- and two-soliton solutions of the sine-Gordon equation as applied to DNA. Biophysics. 2005;50(3):404-409.
  24. Yakushevich L.V., Krasnobaeva L.A. Influence of dissipation and external field on the dynamics of local deformations in DNA. Biophysics. 2007;52(2):179-184. doi: 10.1134/S0006350907020066
  25. Zakiryanov F.K., Yakushevich L.V. Control of the dynamics of the kink of the modified sine-Gordon equation by the external exposure with varying parameters. Computer Research and Modeling. 2013;5(5):821-834 (in Russ.).
Содержание Оригинальная статья
Мат. биол. и биоинф.
2016;11(1):81-90
doi: 10.17537/2016.11.81
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024