Русская версия English version   
Том 12   Выпуск 2   Год 2017
Быстрова А.В., Парамонова Е.В., Бдикин И.К., Силибин М.В., Карпинский Д.В., Менг К.Я., Быстров В.С.

Компьютерное молекулярное моделирование пьезоэлектрических свойств сегнетоэлектрических композитов на основе поливинилиден-фторида с графеном и оксидом графена

Математическая биология и биоинформатика. 2017;12(2):466-486.

doi: 10.17537/2017.12.466.

Список литературы

 

  1. Bystrov V.S., Bdikin I., Heredia A., Pullar R.C., Mishina E., Sigov A., Kholkin A.L. Piezoelectricity and Ferroelectricity in biomaterials: from proteins to self-assembled peptide nanotubes. In: Piezoelectric Nanomaterials for Biomedical Applications. Eds. Ciofani G., Menciassi A. Berlin Heidelberg: Springer-Verlag; 2012. P. 187-211. doi: 10.1007/978-3-642-28044-3_7
  2. Bystrov V.S., Seyedhosseini E., Kopyl S., Bdikin I.K., Kholkin A.L. Piezoelectricity and ferroelectricity in biomaterials: Molecular modeling and piezoresponse force microscopy measurements. J. Appl. Phys. 2014;116(6):066803. doi: 10.1063/1.4891443
  3. Bystrov V.S. Computer Simulation Nanostructures: Bioferroelectric Peptide Nanotubes. Saarbrucken: LAP Lambert Academic Press; 2016. 117 p.
  4. Goncalves G., Marques P.A.A.P., Barros-Timmons A., Bdikin I., Singh M.K., Emami N., Gracio J. Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J. Mater. Chem. 2010;20:9927-9934. doi: 10.1039/c0jm01674h
  5. Kim D., Kim D.W., Lim H.-K., Jeon J., Kim H., Jung H.-T., Lee H. Inhibited phase behavior of gas hydrates in graphene oxide: influences of surface and geometric constraints. Phys. Chem. Chem. Phys. 2014;16:22717. doi: 10.1039/C4CP03263B
  6. Tayi A.S., Shveyd A.K., Sue A.C.H., Szarko J.M., Rolczynski B.S., Cao D., Kennedy T.J., Sarjeant A.A., Stern C.L., Paxton W.F., Wu W., Dey S.K., Fahrenbach A.C., Guest J.R., Mohseni H., Chen L.X., Wang K.L., Stoddart J.F., Stupp S.I. Room–temperature ferroelectricity in supramolecular networks of charge-transfer complexes. Nature. 2012;488:485-489. doi: 10.1038/nature11395
  7. Zhang G., Li Q., Gu H., Jiang S., Han K., Gadinski M.R., Haque M.A., Zhang Q., Wang Q. Ferroelectric Polymer Nanocomposites for Room–Temperature Electrocaloric Refrigeration. Advanced materials. 2015;27:1450-1454. doi: 10.1002/adma.201404591
  8. Chen S., Zeng X.C. Design of Ferroelectric Organic Molecular Crystals with Ultrahigh Polarization. Journal of the American Chemical Society. 2014;136:6428-6436. doi: 10.1021/ja5017393
  9. Heredia A., Meunier V., Bdikin I.K., Gracio J., Balke N., Jesse S., Tselev A., Agarwal P.K., Sumpter B.G., Kalinin S.V., Kholkin A.L. Nanoscale Ferroelectricity in Crystalline γ–Glycine. Advanced Functional Materials. 2012;22:2996-3003. doi: 10.1002/adfm.201103011
  10. Kholkin A., Amdursky N., Bdikin I., Gazit E., Rosenman G. Strong Piezoelectricity in Bioinspired Peptide Nanotubes. ACS Nano. 2010;4:610-614. doi: 10.1021/nn901327v
  11. Bystrov V.S., Paramonova E., Bdikin I., Kopyl S., Heredia A., Pullar R.C., Kholkin A.L. BioFerroelectricity: Diphenylalanine peptide nanotubes computational modeling and ferroelectric properties at the nanoscale. Ferroelectrics. 2012;440(1):3-24. doi: 10.1080/00150193.2012.741923
  12. Hereida A., Bdikin I., Kopyl S., Mishina E., Semin S., Sigov A., German K., Bystrov V., Gracio J., Kholkin A.L. Temperature–driven phase transformation in self-assembled diphenylalanine peptide nanotubes. J. Phys. D: Appl. Phys: Fast Track Communication. 2013;43:462001. doi: 10.1088/0022-3727/43/46/462001
  13. Bystrov V.S., Seyedhosseini E., Bdikin I., Kopyl S., Neumayer S.M., Coutinho J., Kholkin A.L. BioFerroelectricity: Glycine and Thymine nanostructures computational modeling and ferroelectric properties at the nanoscale. Ferroelectrics. 2015;475(1):107-126. doi: 10.1080/00150193.2015.995574
  14. Bystrov V.S., Seyedhosseini E., Bdikin I.K., Kopyl S., Kholkin A.L., Vasilev S.G., Zelenovskiy P.S., Vasileva D.S. Shur V.Y. Glycine nanostructures and domains in beta-glycine: Computational modeling and PFM observations. Ferroelectrics. 2016;496:28-45. doi: 10.1080/00150193.2016.1157435
  15. Blinov L.M., Fridkin V.M., Palto S.P., Bune A.V., Dowben P.A., Ducharme S. Two-dimensional ferroelectrics. Physics–Uspekhi. 2000;43(3):243. doi: 10.1070/PU2000v043n03ABEH000639
  16. Fridkin V., Ducharme S. Ferroelectricity at the Nanoscale. Basics and Applications. Berlin Heidelberg: Springer-Verlag; 2014. doi: 10.1007/978-3-642-41007-9
  17. Bystrov V.S., Paramonova E.V., Dekhtyar Yu., Pullar R.C., Katashev A., Polyaka N., Bystrova A.V., Sapronova A.V., Fridkin V.M., Kliem H., Kholkin A.L. Polarizarion of poly(vinylidene fluoride) and poly(vinylidene fluoride–trifluoroethylene) thin films revealed by emission spectroscopy with computational simulation during phase transition. J. Appl. Phys. 2012;111:104113. doi: 10.1063/1.4721373
  18. Bae S.–H., Kahya O., Sharma B.K., Kwon J., Cho H.J., Özyilmaz B., Ahn J.–H. Graphene–P(VDF–TrFE) multilayer film for flexible applications. ACS Nano. 2013;7:3130-3138. doi: 10.1021/nn400848j
  19. Md Ataur R., Byung-Chul L., Duy-Thach P., Gwiy-Sang C. Fabrication and characterization of highly efficient flexible energy harvesters using PVDF–graphene nanocomposites. Smart Materials and Structures. 2013;22:085017. doi: 10.1088/0964-1726/22/8/085017
  20. Sencadas V., Ribeiro C., Bdikin I.K., Kholkin A.L., Lanceros-Mendez S. Local piezoelectric response of single poly(vinylidene fluoride) electrospun fibers. Physica Status Solidi (a). 2012;209:2605-2609. doi: 10.1002/pssa.201228136
  21. Bystrov V.S., Bdikin I.K., Kiselev D.A., Yudin S.G., Fridkin V.M., Kholkin A.L. Nanoscale polarization pattering of ferroelectric Langmuir-Blodgett P(VDF–TrFE) films. J. Phys. D: Appl. Phys. 2007;40:4571-4577. doi: 10.1088/0022-3727/40/15/030
  22. Bystrov V.S., Bystrova N.K., Paramonova E.V., Vizdrik G., Sapronova A.V., Kuehn M., Kliem H., Kholkin A.L. First principle calculations of molecular polarization switching in P(VDF–TrFE) ferroelectric thin Langmuir–Bliodgett films. J. Phys: Condens. Matter. 2007;19:456210. doi: 10.1088/0953-8984/19/45/456210
  23. Bystrov V.S., Paramonova E.V., Bikin I.K., Bystrova A.V., Pullar R.C., Kholkin A.L. Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly(vinylidene fluoride) (PVDF). J. Mol. Model. 2013;19:3591-3602. doi: 10.1007/s00894-013-1891-z
  24. Bystrov V.S. Molecular modeling and molecular dynamics simulation of the polarization switching phenomena in the ferroelectric polymers PVDF at the nanoscale. Physica B. 2014;432:21-25. doi: 10.1016/j.physb.2013.09.016
  25. Geim A.K. Graphene: Status and Prospects. Science. 2009;324:1530-1534. doi: 10.1126/science.1158877
  26. Wang Z., Yu H., Xia J., Zhang F., Li F., Xia Y., Li Y. Novel GO-blended PVDF ultrafiltration membranes. Desalination. 2012;299:50-54. doi: 10.1016/j.desal.2012.05.015
  27. Zhao C., Xu X., Chen J., Yang F. Optimization of preparation conditions of poly(vinylidene fluoride)/graphene oxide microfiltration membranes by the Taguchi experimental design. Desalination. 2014;334:17-22. doi: 10.1016/j.desal.2013.07.011
  28. Zhao C., Xu X., Chen J., Wang G., Yang F. Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination. 2014;340:59-66. doi: 10.1016/j.desal.2014.02.022
  29. Chang X., Wang Z., Quan S., Xu Y., Jiang Z., Shao L. Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance. Applied Surface Science. 2014;316:537-548. doi: 10.1016/j.apsusc.2014.07.202
  30. Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. The electronic properties of graphene. Reviews of Modern Physics. 2009;81:109-162. doi: 10.1103/RevModPhys.81.109
  31. Layek R.K., Samanta S., Chatterjee D.P., Nandi A.K. Physical and mechanical properties of poly(methyl methacrylate)–functionalized graphene/poly(vinylidine fluoride) nanocomposites: Piezoelectric β polymorph formation. Polymer. 2010;51:5846-5856. doi: 10.1016/j.polymer.2010.09.067
  32. Kuilla T., Bhadra S., Yao D., Kim N.H., Bose S., Lee J.H. Recent advances in graphene based polymer composites. Progress in Polymer Science. 2010;35:1350-1375. doi: 10.1016/j.progpolymsci.2010.07.005
  33. Ataur Rahman M., Chung G.-S. Synthesis of PVDF–graphene nanocomposites and their properties. Journal of Alloys and Compounds. 2013;581:724-730. doi: 10.1016/j.jallcom.2013.07.118
  34. Adohi B.J.P., Laur V., Haidar B., Brosseau C. Measurement of the microwave effective permittivity in tensile–strained polyvinylidene difluoride trifluoroethylene filled with graphene. Applied Physics Letters. 2014;104:082902. doi: 10.1063/1.4866419
  35. Jiang Z.Y., Zheng G.P., Han Z., Liu Y.Z., Yang J.H. Enhanced ferroelectric and pyroelectric properties of poly(vinylidene fluoride) with addition of graphene oxides. Journal of Applied Physics. 2014;115:204101. doi: 10.1063/1.4878935
  36. Shang J., Zhang Y., Yua L., Shen B., Lv F., Chu P.K. Fabrication and dielectric properties of oriented polyvinylidene fluoride nanocomposites incorporated with graphene nanosheets. Materials Chemistry and Physics. 2012;134:867-874. doi: 10.1016/j.matchemphys.2012.03.082
  37. Lv C., Xue Q., Xia D., Ma M., Xie J., Chen H. Effect of Chemisorption on the Interfacial Bonding Characteristics of Graphene−Polymer Composites. The Journal of Physical Chemistry. 2010:114;6588-6594. doi: 10.1021/jp100110n
  38. Ding N., Chen X., Wu C.-M.L., Lu X. Computational Investigation on the Effect of Graphene Oxide Sheets as Nanofillers in Poly(vinyl alcohol)/Graphene Oxide Composites. The Journal of Physical Chemistry. 2012:116;22532-22538. doi: 10.1021/jp3056587
  39. Lee J.-H., Lee K.Y., Gupta M.K., Kim T.Y., Lee D.-Y., Oh J., Ryu C., Yoo W.J., Kang C.-Y., Yoon S.-J., Yoo J.-B., Kim S.-W. Highly stretchable piezoelectric–pyroelectric hybrid nanogenerator. Advanced Materials. 2014;26(5):765-769. doi: 10.1002/adma.201303570
  40. An N., Liu S., Fang C., Yu R., Zhou X., Cheng Y. Preparation and properties of β-phase graphene oxide/PVDF composite films. J. Appl. Polym. Sci. 2015;132:41577. doi: 10.1002/app.41577
  41. Goncalves G., Marques P.A.A.P., Granadeiro C.M., Nogueira H.I.S., Singh M.K., Grácio J. Surface Modification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth. Chemistry of Materials. 2009;21:4796-4802. doi: 10.1021/cm901052s
  42. Balke N., Bdikin I., Kalinin S.V., Kholkin A.L. Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future. Journal of the American Ceramic Society. 2009;92:1629-1647. doi: 10.1111/j.1551-2916.2009.03240.x
  43. Jin Y., Lu X., Zhang J., Kan Y., Bo H., Huang F., Xu T., Du Y., Xiao S., Zhu J. Studying the Polarization Switching in Polycrystalline BiFeO3 Films by 2D Piezoresponse Force Microscopy. Scientific reports. 2015;5:12237. doi: 10.1038/srep12237
  44. HyperChem. Tools for Molecular Modeling. Gainesville: Hypercube Inc. 2007. http://www.hyper.com/?tabid=360 (accessed 17 November 2017).
  45. Yoshizawa K., Okahara K., Sato T., Tanaka K., Yamabe T. Molecular orbital study of pyrolitic carbons based on small cluster model. Carbon. 1994;32(8):1517-1522. doi: 10.1016/0008-6223(94)90147-3
  46. Burian A., Ratuszna A., Dore J. Radial distribution function analysis of the structure of activated carbons. Carbon. 1998;36:1613-1621. doi: 10.1016/S0008-6223(98)00131-6
  47. Matthews M.J., Dresselhaus M.S., Endo M., Sasabe Y., Takahashi T., Takeuchi K. Characterization of polyparaphenylene (PPP)–based carbons. J. Mater. Res. 1996;11:3099-3109. doi: 10.1557/JMR.1996.0394
  48. Wei Q., Tong X., Zhang G., Qiao J., Gong Q., Sun S. Nitrogen–Doped carbon nanotube and 4-27 graphene materials for oxygen reduction reactions. Catalysts. 2015;5:1574-1602. doi: 10.3390/catal5031574
  49. Loh K.P., Bao Q., Eda G., Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry. 2010:2; 1015-1024. doi: 10.1038/nchem.907
  50. Silibin M., Bystrov V.S., Karpinsky D., Nasani N., Goncalves G., Gavrilin I.M., Solnyshkin A.V, Marques P.A.A.P., Singh B., Bdikin I. Local mechanical and electromechanical properties of the P(VDF-TrFE)-graphene oxide thin films. Applied Surface Science. 2017;421(Part A):42-51.
  51. Bystrov V.S., Bdikin I., Maksim Silibin M.V., Karpinsky D., Kopyl S, Paramonova E.V., Goncalves G. Molecular modeling of the piezoelectric properties of ferroelectric composites containing polyvinylidene fluoride (PVDF) and either graphene or graphene oxide. J. Mol. Mod. 2017;23:128. doi: 10.1007/s00894-017-3291-2
  52. Scriven L.E. Physics and applications of dip coating and spin coating. MRS Proceedings. 1988;121. doi: 10.1557/PROC-121-717
  53. Schubert D.W., Dunkel T. Spin coating from a molecular point of view: its concentration regimes, influence of molar mass and distribution. Materials Research Innovations. 2003;7:314. doi: 10.1007/s10019-003-0270-2
  54. Hanaor D.A.H., Triani G., Sorrell C.C. Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin films. Surface and Coatings Technology. 2011;205(12):3658-3664. doi: 10.1016/j.surfcoat.2011.01.007
  55. Fernandez M.V., Suzuki A., Chiba A. Study of annealing effects on the structure of vinylidene fluoride-trifluoroethylene copolymers using WAXS and SAXS. Macromolecules. 1987;20:180. doi: 10.1021/ma00174a018
  56. Furukawa T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions. 1989;18:143. doi: 10.1080/01411598908206863
  57. Bergman J.G., McFee J.H., Crane G.R. Pyroelectricity and optical second harmonic generation in polyvinylidene fluoride films. Appl. Phys. Lett. 1971;18:203. doi: 10.1063/1.1653624
  58. Tashiro K., Kobayashi M., Tadokoro H., Fukada E. Calculation of elastic and piezoelectric constants of polymer crystals by a point charge model: Application to Poly(vinylidene fluoride) form I. Macromolecules. 1980;13:691. doi: 10.1021/ma60075a040
  59. Palto S. Blinov L., Bune A., Dubovik E., Fridkin V., Petukhova N., Verkhovskaya K., Yudin S. Ferroelectric Langmuir-Blodgett films. Ferroelectrics Lett. 1995;19:65. doi: 10.1080/07315179508204276
  60. Ducharme S., Bune A., Fridkin V., Blinov L., Palto S., Petukhova N., Yudin S. Ultrathin ferroelectric polymer films. Ferroelectrics. 1997;202:29. doi: 10.1080/00150199708213458
  61. Bune A.V., Fridkin V.M., Ducharme S., Blinov L.M., Palto S.P., Sorokin A.V., Yudin S.G., Zlatkin A. Two-dimensional ferroelectric films. Nature. 1998;391. doi: 10.1038/36069
  62. Kliem H., Tardos-Morgane R.J. Extrinsic versus intrinsic ferroelectric switching: experimental investigations using ultra-thin PVDF Langmuir–Blodgett films. Phys. D: Appl. Phys. 2005;38:1860-1868. doi: 10.1088/0022-3727/38/12/002
  63. Tolstousov A., Gaynutdinov R.V., Tadros-Morgane R., Yudin S.G., Tolstikhina A.L., Kliem H., Ducharme S., Fridkin V.M. Ferroelectric Properties of Langmuir-Blodgett Copolymer Films at the Nanoscale. Ferroelectrics. 2007;354:99-110. doi: 10.1080/00150190701454669
  64. Rodrigeuz B.J., Jesse S., Kalinin S., Kim J., Ducharme S., Fridkin V.M. Nanoscale polarization manipulation and imaging of ferroelectric Langmuir-Blodgett polymer films. Appl. Phys. Lett. 2007;90. Article No. 122904. doi: 10.1063/1.2715102
  65. Gaynutdinov R.V., Mitko S., Yudin S.G., Fridkin V.M., Ducharme S. Polarization switching at the nanoscale in ferroelectric copolymer thin films. Appl. Phys. Lett. 2011;99:142904. doi: 10.1063/1.3646906
  66. Gaynutdinov R., Yudin S., Ducharme S., Fridkin V. Homogeneous switching in ultrathin ferroelectric films. J. Phys.: Condens. Matter. 2012;24. Article No. 015902. doi: 10.1088/0953-8984/24/1/015902
  67. Tagantsev A.K., Cross L.E., Fousek J. Domains in Ferroic Crystals and Thin Films. New York: Springer; 2010. doi: 10.1007/978-1-4419-1417-0
  68. Vizdrik G., Ducharme S., Fridkin V.M., Yudin S.G. Phys. Rev. B. 2003;68. Article No. 094113. doi: 10.1103/PhysRevB.68.094113
  69. Bune A.V., Zhu C., Ducharme S., Blinov L.M., Fridkin V.M., Palto S.P., Petukhova N.G., Yudin S.G. Piezoelectric and pyroelectric properties of ferroelectric Langmuir-Blodgett polymer films. J. Appl. Phys. 1999;85(11):7869-7873. doi: 10.1063/1.370598
  70. Gaynutdinov R.V., Lysova O.A., Yudin S.G., Tolstikhina A.L., Kholkin A.L., Fridkin V.M., Ducharme S. Polarization switching kinetics of ferroelectric nanomesas of vinylidene fluoride-trifluoroethylene copolymer. Appl. Phys. Lett. 2009;95:023303. doi: 10.1063/1.3176213
Содержание Оригинальная статья
Мат. биол. и биоинф.
2017;12(2):466-486
doi: 10.17537/2017.12.466
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024