Русская версия English version   
Том 14   Выпуск 1   Год 2019
Неверова Г.П.1,2,3, Жданова О.Л.1,2, Фрисман Е.Я.2

Моделирование динамики сообщества «хищник-жертва» при наличии возрастных структур

Математическая биология и биоинформатика. 2019;14(1):77-93.

doi: 10.17537/2019.14.77.

Список литературы

 

  1. Volterra V. Leçons sur la théorie mathématique de la lutte pour la vie (Lessons on the mathematical theory of the struggle for life). Paris: Gauthier-Villars; 1931.(in French).
  2. Nicholson A.J. Supplement: the Balance of Animal Populations. Journal of Animal Ecology. 1933;2(1):131-178. doi: 10.2307/954
  3. Nicholson A.J., Bailey V.A. The Balance of Animal Populations. Proceedings of the Zoological Society of London. 1935;105(3):551-598. doi: 10.1111/j.1096-3642.1935.tb01680.x
  4. Kolmogorov A.N., Petrovskii I.G., Piskunov N.S. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika 1937;6(1):1-26 (in Russ.).
  5. Rosenzweig A., MacArthur R.H. Graphical representation and stability conditions of predator-prey interaction. Amer. Natur. 1963;97:209-223. doi: 10.1086/282272
  6. Kolmogorov A.N. Problemy kibernetiki (Cybernetics problems). 1972;5:100-106 (in Russ.).
  7. Bazykin A.D. Matematicheskaia biofizika vzaimodeistvuiushchikh populiatsii (Mathematical biophysics of interacting populations). Moscow; 1985. 181 p. (in Russ.).
  8. Hassell M P. Host-parasitoid population dynamics. Journal of Animal Ecology. 2000;69:543-566. doi: 10.1046/j.1365-2656.2000.00445.x
  9. Abakumov A.I. Sibirskii ekologicheskii zhurnal (Siberian Journal of Ecology). 2001;5:559-563 (in Russ.).
  10. Abakumov A.I., Kazakova M.G. Spatial model of species community. Dal'nevost. Mat. Zh. 2002;3(1):102-107 (in Russ.).
  11. Riznichenko G.Iu., Rubin A.B. Biofizicheskaia dinamika produktsionnykh protsessov (Biophysical dynamics of production processes). Moscow-Izhevsk; 2004. 464 p. (in Russ.).
  12. Nedorezov L.V. Chaos and Order in Population Dynamics: Modeling, Analysis, Forecast. Saarbrucken: LAP Lambert Academic Publishing; 2012.
  13. Hebblewhite M. Wolf and elk predator-prey dynamics in Banff National Park: Masters of Science Thesis. USA: University of Montana; 2000.
  14. Elmhagen B., Hellström P., Angerbjörn A., Kindberg J. Changes in Vole and Lemming Fluctuations in Northern Sweden 1960-2008 Revealed by Fox Dynamics. Annales Zoologici Fennici. 2011;48(3):167-179. doi: 10.5735/086.048.0305
  15. Keim J.L., DeWitt P.D., Lele S.R. Predators choose prey over prey habitats: evidence from a lynx-hare system. Ecological Applications. 2011;21(4):1011-1016. doi: 10.1890/10-0949.1
  16. Luiselli L., Migliazza R., Rotondo P., Amori G. Macro-ecological patterns of a prey-predator system: rodents and snakes in West and Central Africa. Tropical Zoology. 2014;27(1):1-8. doi: 10.1080/03946975.2014.894399
  17. Abakumov A.I., Izrailsky Yu.G., Frisman E.Ya. Complex Plankton Dynamics in a Topographic Eddy. Mathematical Biology and Bioinformatics. 2015;10(1):416-426 (in Russ.). doi: 10.17537/2015.10.416.
  18. Agiza H.N., Elabbasy E.M., El-Metwally H., Elsadany A.A. Chaotic dynamics of a discrete prey-predator model with Holling type II. Nonlinear Analysis: Real World Applications. 2009;10(1):116-129. doi: 10.1016/j.nonrwa.2007.08.029
  19. Hu Z., Teng Z., Zhang L. Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response. Nonlinear Analysis: Real World Applications. 2011;12(4):2356-2377. doi: 10.1016/j.nonrwa.2011.02.009
  20. Mistro D.P., Rodrigues L.A.D., Petrovskii S. Spatiotemporal complexity of biological invasion in a space- and time-discrete predator-prey system with the strong Allee effect. Ecological Complexity. 2012;9:16-32. doi: 10.1016/j.ecocom.2011.11.004
  21. He Z., Li B. Complex dynamic behavior of a discrete-time predator-prey system of Holling-III type. Advances in Difference Equations. 2014. Article No. 180. doi: 10.1186/1687-1847-2014-180
  22. Bashkirtseva I.A., Boyarshinova P.V., Ryazanova T.V., Ryashko L.B. Analysis of noise-induced destruction of coexistence regimes in "prey-predator" population model. Computer Research and Modeling. 2016;8(4):647-660 (in Russ.).
  23. Khan A.Q. Neimark-Sacker bifurcation of a two-dimensional discrete-time predator-prey model. SpringerPlus. 2016;5(1). Article No. 126. doi: 10.1186/s40064-015-1618-y
  24. Huang T., Zhang H. Bifurcation, chaos and pattern formation in a space-and time-discrete predator-prey system. Chaos, Solitons & Fractals. 2016;91:92-107. doi: 10.1016/j.chaos.2016.05.009
  25. Huang T., Zhang H., Yang H., Wang N., Zhang F. Complex patterns in a space-and time-discrete predator-prey model with Beddington-DeAngelis functional response. Communications in Nonlinear Science and Numerical Simulation. 2017;43:182-199. doi: 10.1016/j.cnsns.2016.07.004
  26. Kon R. Multiple attractors in host-parasitoid interactions: Coexistence and extinction. Mathematical Biosciences. 2006;201(1-2):172-183. doi: 10.1016/j.mbs.2005.12.010
  27. Kang Y., Armbruster D., Kuang Y. Dynamics of a plant-herbivore model. Journal of Biological Dynamics. 2008;2(2):89-101. doi: 10.1080/17513750801956313
  28. Kang Y., Armbruster D. Noise and seasonal effects on the dynamics of plant-herbivore models with monotonic plant growth functions. International Journal of Biomathematics. 2011;4(3):255-274. doi: 10.1142/S1793524511001234
  29. Hilker F.M., Malchow H., Langlais M., Petrovskii S.V. Oscillations and waves in a virally infected plankton system: Part II: Transition from lysogeny to lysis. Ecological Complexity. 2006;3(3):200-208. doi: 10.1016/j.ecocom.2006.03.002
  30. Sambath M., Balachandran K., Suvinthra M. Stability and Hopf bifurcation of a diffusive predator-prey model with hyperbolic mortality. Complexity. 2016;21(S1):34-43. doi: 10.1002/cplx.21708
  31. Hogarth W.L., Diamond P. Interspecific competition in larvae between entomophagous parasitoids. American Naturalist. 1984;124:552-560. doi: 10.1086/284294
  32. Kakehash N., Suzuki Y., Iwasa Y. Niche overlap of parasitoids in host-parasitoid systems: its consequence to single versus multiple introduction controversy in biological control. Journal of Applied Ecology. 1984;21:115-131. doi: 10.2307/2403041
  33. Liao X., Ouyang Z., Zhou S. Permanence and stability of equilibrium for a two-prey one-predator discrete model. Applied Mathematics and Computation. 2007;186:93-100. doi: 10.1016/j.amc.2006.07.090
  34. He R., Xiong Z., Hong D., Yin H. Analysis of a stochastic ratio-dependent one-predator and two-mutualistic-preys model with Markovian switching and Holling type III functional response. Advances in Difference Equations. 2016;1. Article No. 285. doi: 10.1186/s13662-016-1011-3
  35. Liu M., Bai P. Dynamics of a stochastic one-prey two-predator model with Lévy jumps. Applied Mathematics and Computation. 2016;284:308-321. doi: 10.1016/j.amc.2016.02.033
  36. Liu M., Fan M. Stability in distribution of a three-species stochastic cascade predator-prey system with time delays. IMA Journal of Applied Mathematics. 2017;82(2):396-423.
  37. Mbava W., Mugisha J.Y.T., Gonsalves J.W. Prey, predator and super-predator model with disease in the super-predator. Applied Mathematics and Computation. 2017;297:92-114. doi: 10.1016/j.amc.2016.10.034
  38. Srinivasu P.D.N., Ismail S., Naidu C.R. Global dynamics and controllability of a harvested prey-predator system. Journal of Biological Systems. 2001;9(1):67-79. doi: 10.1142/S0218339001000311
  39. Walters P., Christensen V., Fulton B., Smith A.D., Hilborn R. Predictions from simple predator-prey theory about impacts of harvesting forage fishes. Ecological Modelling. 2016;337:272-280. doi: 10.1016/j.ecolmodel.2016.07.014
  40. Liu M., He X., Yu J. Dynamics of a stochastic regime-switching predator-prey model with harvesting and distributed delays. Nonlinear Analysis: Hybrid Systems. 2018;28:87-104. doi: 10.1016/j.nahs.2017.10.004
  41. Saito Y., Takeuchi Y. A time-delay model for prey-predator growth with stage structure. Canadian Applied Mathematics Quarterly. 2003;11(3):293-302.
  42. Gourley S.A., Kuang Y. A stage structured predator-prey model and its dependence on maturation delay and death rate. Journal of Mathematical Biology. 2004;49(2):188-200. doi: 10.1007/s00285-004-0278-2
  43. Abrams P.A., Quince C. The impact of mortality on predator population size and stability in systems with stage-structured prey. Theoretical Population Biology. 2005;68(4):253-266. doi: 10.1016/j.tpb.2005.05.004
  44. Sun X.K., Huo H.F., Xiang H. Bifurcation and stability analysis in predator-prey model with a stage-structure for predator. Nonlinear Dynamics. 2009;58(3):497-513. doi: 10.1007/s11071-009-9495-y
  45. Xu R. Global dynamics of a predator-prey model with time delay and stage structure for the prey. Nonlinear Analysis: Real World Applications. 2011;12(4):2151-2162. doi: 10.1016/j.nonrwa.2010.12.029
  46. Chakraborty K., Chakraborty M., Kar T.K. Bifurcation and control of a bioeconomic model of a prey-predator system with a time delay. Nonlinear Analysis: Hybrid Systems. 2011;5(4):613-625. doi: 10.1016/j.nahs.2011.05.004
  47. Chakraborty K., Chakraborty M., Kar T.K. Optimal control of harvest and bifurcation of a prey-predator model with stage structure. Applied Mathematics and Computation. 2011;217(21):8778-8792. doi: 10.1016/j.amc.2011.03.139
  48. Chakraborty K., Jana S., Kar T.K. Global dynamics and bifurcation in a stage structured prey-predator fishery model with harvesting. Applied Mathematics and Computation. 2012;218(18):9271-9290. doi: 10.1016/j.amc.2012.03.005
  49. Bhattacharyya J., Pal S. The role of space in stage-structured cannibalism with harvesting of an adult predator. Computers & Mathematics with Applications. 2013;66(3):339-355. doi: 10.1016/j.camwa.2013.05.011
  50. Bhattacharyya J., Pal S. Stage-Structured Cannibalism in a Ratio-Dependent System with Constant Prey Refuge and Harvesting of Matured Predator. Differential Equations and Dynamical Systems. 2016;24(3):345-366. doi: 10.1007/s12591-016-0299-5
  51. Ma X., Shao Y., Wang Z., Luo M., Fang X., Ju Z. An impulsive two-stage predator-prey model with stage-structure and square root functional responses. Mathematics and Computers in Simulation. 2016;119:91-107. doi: 10.1016/j.matcom.2015.08.009
  52. Khajanchi S. Modeling the dynamics of stage-structure predator-prey system with Monod-Haldane type response function. Applied Mathematics and Computation. 2017;302:122-143. doi: 10.1016/j.amc.2017.01.019
  53. Khajanchi S., Banerjee S. Role of constant prey refuge on stage structure predator-prey model with ratio dependent functional response. Applied Mathematics and Computation. 2017;314:193-198. doi: 10.1016/j.amc.2017.07.017
  54. Wikan A. From chaos to chaos. An analysis of a discrete age-structured prey-predator model. Journal of Mathematical Biology. 2001;43(6):471-500. doi: 10.1007/s002850100101
  55. Tang S., Chen L. A discrete predator-prey system with age-structure for predator and natural barriers for prey. Mathematical Modelling and Numerical Analysis. 2001;35(4):675-690. doi: 10.1051/m2an:2001102
  56. Wikan A. An Analysis of Discrete Stage-Structured Prey and Prey-Predator Population Models. Discrete Dynamics in Nature and Society. 2017;2017. Article ID 9475854. doi: 10.1155/2017/9475854
  57. Agarwal M., Devi S. Persistence in a ratio-dependent predator-prey-resource model with stage structure for prey. International Journal of Biomathematics. 2010;3(3):313-336. doi: 10.1142/S179352451000101X
  58. Agarwal M., Devi S. A stage-structured predator-prey model with density-dependent maturation delay. International Journal of Biomathematics. 2011;4(3):289-312. doi: 10.1142/S1793524511001271
  59. Angerbjorn A., Tannerfeldt M., Erlinge S. Predator-prey relationships: arctic foxes and lemmings. Journal of Animal Ecology. 1999;68(1):34-49. doi: 10.1046/j.1365-2656.1999.00258.x
  60. Frisman E.Ya., Neverova G.P., Kulakov M.P., Zhigalskii O.A. Changing the Dynamic Modes in Populations with Short Life Cycle: Mathematical Modeling and Simulation. Mathematical Biology and Bioinformatics. 2014;9(2):414-429 (in Russ.). doi: 10.17537/2014.9.414.
  61. Zhdanova O.L., Frisman Y.Y. Mathematical modeling of the mechanism of a reproductive strategies differentiation in natural populations (on the example of arctic fox, Alopex lagopus). Computer Research and Modeling. 2016;8(2):213-228 (in Russ.).
  62. Fishman B.E., Frisman E.Ya., Shlufman K.V. Interval-periodic dynamic of recurrence equation. Information Science and Control Systems. 2013;3(37):66-73 (in Russ).
  63. Kaikusalo A., Angerbjörn A. The arctic fox population in Finnish Lapland during 30 years, 1964-93. Annales Zoologici Fennici. 1995;32:69-77.
  64. Angerbjörn A., Tannerfeldt M., Lundberg H. Geographical and temporal patterns of lemming population dynamics in Fennoscandia. Ecography. 2001;24(3):298-308. doi: 10.1034/j.1600-0587.2001.240307.x
  65. Kuznetsov A.P., Sedova J.V. Bifurcations of three-and four-dimensional maps: Universal properties. Izvestiya VUZ, Applied Nonlinear Dynamics. 2012;20(5):26-43 (in Russ.). doi: 10.18500/0869-6632-2012-20-5-26-43
  66. Chow Sh.-N., Li Ch., Wang D. Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press; 1994. 484 p. doi: 10.1017/CBO9780511665639
  67. Hersteinsson P., Macdonald D.W. Diet of Arctic foxes (Alopex lagopus) in Iceland. J. Zool. 1996;240:457-474. doi: 10.1111/j.1469-7998.1996.tb05298.x
Содержание Оригинальная статья
Мат. биол. и биоинф.
2019;14(1):77-93
doi: 10.17537/2019.14.77
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024