Быстров В.С.1, Парамонова Е.В.1, Филиппов С.В.1, Авакян Л.А.2, Чайкина М.В.3, Еремина Н.В.3, Макарова С.В.3, Булина Н.В.3
Цинк-замещенные структуры гидроксиапатита: моделирование и эксперимент
Математическая биология и биоинформатика. 2023;18(2):580-601.
doi: 10.17537/2023.18.580.
Список литературы
- Epple M., Ganesan K., Heumann R., Klesing J., Kovtun A., Neumann S., Sokolova V. Application of calcium phosphate nanoparticles in biomedicine. Journal of Materials Chemistry. 2010;20(1):18–23. doi: 10.1039/B910885H
- Comprehensive Biomaterials II. 2nd ed. Eds. Ducheyne P., Healy K., Hutmacher D.E., Grainger D.W., Kirkpatrick C.J. Amsterdam: Elsevier, 2017.
- Duminis T., Shahid S., Hill R.G. Apatite Glass-Ceramics: A Review. Front. Mater. 2017;3. Article No. 59. doi: 10.3389/fmats.2016.00059
- Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E. Biomaterials Science. Oxford: Academic Press, 2013.
- Barinov S.M., Komlev V.S. Biokeramika na osnove fosfatov kal'tsiia (Bioceramics based on calcium phosphates). Moscow, 2005. 204 p.(in Russ.).
- Dorozhkin S.V. Calcium orthophosphate deposits: Preparation, properties and biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2015;55:272–326. doi: 10.1016/j.msec.2015.05.033
- Ratnayake J.T.B., Mucalo M., Dias G.J. Substituted hydroxyapatites for bone regeneration: A review of current trends. J. Biomed. Mater. Res. B Appl. Biomater. 2017;105:1285–1299. doi: 10.1002/jbm.b.33651
- Elliot J.C. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Amsterdam: Elsevier, 1994.
- Kay M.I., Young R.A., Posner A.S. Crystal Structure of Hydroxyapatite. Nature (London). 1964;204:1050–1052. doi: 10.1038/2041050a0
- Mucalo M. Hydroxyapatite (HAp) for Biomedical Applications. Amsterdam: Elsevier, 2015. doi: 10.1016/B978-1-78242-033-0.00014-6
- Šupova M. Substituted hydroxyapatites for biomedical applications: A review. Ceram. Int. 2015;41:9203–9231. doi: 10.1016/j.ceramint.2015.03.316
- Fihri A., Len C., Varma R.S., Solhy A. Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 2017;347:48–76. doi: 10.1016/j.ccr.2017.06.009
- Bystrov V.S. Computational Studies of the Hydroxyapatite Nanostructures, Peculiarities and Properties. Math. Biol. Bioinform. 2017;12:14–54. doi: 10.17537/2017.12.14
- Bystrov V., Bystrova A., Dekhtyar Y., Khlusov I.A., Pichugin V., Prosolov K., Sharkeev Y. Electrical functionalization and fabrication of nanostructured hydroxyapatite coatings. In: Bioceramics and Biocomposites: From Research to Clinical Practice. Ed. A. Jiulian. Hoboken: John Wiley & Sons, Inc., 2019. P. 149–190. doi: 10.1002/9781119372097.ch7
- Leon B., Janson J.A. Thin Calcium Phosphate Coatings for Medical Implants. Berkkin: Springer, 2009. doi: 10.1007/978-0-387-77718-4
- Baltacis K., Bystrov V., Bystrova A., Dekhtyar Y., Freivalds T., Raines J., Rozenberga K., Sorokins H., Zeidaks M. Physical fundamentals of biomaterials surface electrical functionalization. Materials. 2020;13:4575. doi: 10.3390/ma13204575
- Bystrov V.S., Piccirillo C., Tobaldi D.M., Castro P.M.L., Coutinho J., Kopyl S., Pullar R.C. Oxygen vacancies, the optical band gap (Eg) and photocatalysis of hydroxyapatite: Comparing modelling with measured data. Appl. Catal. B Environ. 2016;196:100–107. doi: 10.1016/j.apcatb.2016.05.014
- Figueroa-Rosales E.X., Martínez-Juárez J., García-Díaz E., Hernández-Cruz D., Sabinas-Hernández S.A., Robles-Águila M.J. Photoluminescent Properties of Hydroxyapatite and Hydroxyapatite/Multi-Walled Carbon Nanotube Composites. Crystals. 2021;11. Article No. 832. doi: 10.3390/cryst11070832
- Oulguidoum A., Bouiahya K., Bouyarmane H., Talbaoui A., Nunzi J.-M., Laghzizil A. Mesoporous nanocrystalline sulfonated hydroxyapatites enhance heavy metal removal and antimicrobial activity. Sep. Purif. Technol. 2020;255. Article No. 117777. doi: 10.1016/j.seppur.2020.117777
- Yang P., Yang P., Teng X., Lin J., Huang L. A novel luminescent mesoporous silica/apatite composite for controlled drug release. J. Mater. Chem. 2011;21:5505–5510. doi: 10.1039/c0jm03878d
- Wen Y., Li J., Lin H., Huang H., Song K., Duan K., Guo T., Weng J. Improvement of Drug-Loading Properties of Hydroxyapatite Particles Using Triethylamine as a Capping Agent: A Novel Approach. Crystals. 2021;11. Article No. 703. doi: 10.3390/cryst11060703
- Degli Esposti L., Carella F., Adamiano A., Tampieri A., Iafisco M. Calcium phosphate-based nanosystems for advanced targeted nanomedicine. Drug Dev. Ind. Pharm. 2018;44:1223–1238. doi: 10.1080/03639045.2018.1451879
- Avakyan L., Paramonova E., Bystrov V., Coutinho J., Gomes S., Renaudin G. Iron in Hydroxyapatite: Interstitial or Substitution Sites? Nanomaterials. 2021;11. Article No. 2978. doi: 10.3390/nano11112978
- Mondal S., Manivasagan P., Bharathiraja S., Santha Moorthy M., Kim H.H., Seo H., Lee K.D., Oh J. Magnetic hydroxyapatite: A promising multifunctional platform for nanomedicine application. Int. J. Nanomed. 2017;12:8389–8410. doi: 10.2147/IJN.S147355
- Tampieri A., D’Alessandro T., Sandri M., Sprio S., Landi E., Bertinetti L., Panseri S., Pepponi G., Goettlicher J., Bañobre-López M. et al. Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater. 2012;8:843–851. doi: 10.1016/j.actbio.2011.09.032
- Currey J.D. Bones - Structures and Mechanics. 2nd ed. Princeton: Princeton University Press, 2002.
- Crockett J.C., Rogers M.J., Coxon F.P., Hocking L.J., Helfrich M.H. Bone remodelling at a glance. Journal of Cell Science. 2011;124(7):991–998. doi: 10.1242/jcs.063032
- Koester K.J., Ager J.W. III, Ritchie R.O. The true toughness of human cortical bone measured with realistically short cracks. Nat. Mater. 2008;7:672−677. doi: 10.1038/nmat2221
- Weiner S., Price P.A. Disaggregation of bone into crystals. Calcif. Tissue Int. 1986;39:365−375. doi: 10.1007/BF02555173
- Kanzaki N., Onuma K., Ito A., Teraoka K., Tateishi T., Tsutsumi S. Direct growth rate measurement of hydroxyapatite single crystal by moire phase shift interferometry. J. Phys. Chem. B. 1998;102:6471−6476. doi: 10.1021/jp981512r
- Hughes J.M., Cameron M., Crowley K.D. Structural variations in natural F, OH, and Cl apatites. American Mineralogist. 1989;74:870–876. http://rruff.geo.arizona.edu/AMS/result.php (accessed: 07.12.2023).
- Tite T., Popa A.-C., Balescu L.M., Bogdan I.M., Pasuk I., Ferreira J.M.F., Stan G.E. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods. Materials. 2018;11. Article No. 2081. doi: 10.3390/ma11112081
- Khanal S.P., Mahfuz H., Rondinone A.J., Leventouri T. Improvement of the fracture toughness of hydroxyapatite (HAp) by incorporation of carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and nylon. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;60:204–210. doi: 10.1016/j.msec.2015.11.030
- Uysal I., Severcan F., Tezcaner A., Evis Z. Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite. Prog. Nat. Sci. 2014;24:340–349. doi: 10.1016/j.pnsc.2014.06.004
- Chaikina M.V., Bulina N.V., Prosanov I.Yu., Ishchenko A.V. Anionic substitutions in the mechanochemical synthesis of hydroxyapatite. Chemistry for Sustainable Development. 2019;27:310-317. doi: 10.15372/CSD2019144
- Bigi A., Foresti E., Gregorini R., Ripamonti A., Roveri N., Shah J. The role of magnesium on the structure of biological apatites. Calcif. Tissue Int. 1992;50:439–444. doi: 10.1007/BF00296775
- Ren F., Leng Y., Xin R., Ge X. Synthesis, Characterization and Ab Initio Simulation of Magnesium-Substituted Hydroxyapatite. Acta Biomater. 2010;6:2787–2796. doi: 10.1016/j.actbio.2009.12.044
- Mróz W., Budner B., Syroka R., Niedzielski K., Golański G., Slósarczyk A., Schwarze D., Douglas. T.E. In vivo implantation of porous titanium, alloy implants coated with magnesium‐doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2015;103(1):151–158. doi: 10.1002/jbm.b.33170
- Mróz W., Bombalska A., Burdyńska S., Jedyński M., Prokopiuk A., Budner B., Ślósarczyk A., Zima A., Menaszek E., Ścisłowska-Czarnecka A. et al. Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture. J. Mol. Struct. 2010;977:145–152. doi: 10.1016/j.molstruc.2010.05.025
- Silva L.M., Tavares D.S., Santos E.A. Isolating the Effects of Mg2+, Mn2+ and Sr2+ Ions on Osteoblast Behavior from those Caused by Hydroxyapatite Transformation. Materials Research. 2020;23. No. 2. Article No. e20200083. doi: 10.1590/1980-5373-mr-2020-0083
- Fadeeva I., Kalita V., Komlev D., Radiuk A., Fomin A., Davidova G., Fursova N., Murzakhanov F., Gafurov M., Fosca M., et al. In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma. Materials. 2020;13. Article No. 4411. doi: 10.3390/ma13194411
- Fadeeva I.V., Fomin A.S., Barinov S.M., Davydova G.A., Selezneva I.I., Preobrazhenskii I.I., Rusakov M.K., Fomina A.A., Volchenkova V.A. Synthesis and Properties of Manganese-Containing Calcium Phosphate Materials. Inorganic Materials. 2020;56(7):700–706. doi: 10.1134/S0020168520070055
- Liu H., Cui X., Lu X., Liu X., Zhang L., Chan T.-S. Mechanism of Mn incorporation into hydroxyapatite: Insights from SR-XRD, Raman, XAS, and DFT calculation. Chem. Geol. 2021;579. Article No. 120354. doi: 10.1016/j.chemgeo.2021.120354
- Lala S., Maity T., Singha M., Biswas K., Pradhan S. Effect of doping (Mg, Mn, Zn) on the microstructure and mechanical properties of spark plasma sintered hydroxyapatites synthesized by mechanical alloying. Ceram. Int. 2017;43:2389–2397. doi: 10.1016/j.ceramint.2016.11.027
- Fadeeva I.V., Bakunova N.V., Komlev V.S., Fomin A.S., Barinov S.M., Medvecký L., Gurin A.N. Zinc- And Silver-Substituted Hydroxyapatite: Synthesis And Properties. Doklady Chemistry. 2012;442(2):63-65. doi: 10.1134/S0012500812020097
- Chaikina M.V., Bulina N.V., Prosanov I.Y., Vinokurova O.B., Ishchenko A.V. Structure formation of zinc-substituted hydroxyapatite during mechanochemical synthesis. Inorganic Materials. 2020;56(4):402–408. doi: 10.1134/S0020168520040044
- Bulina N.V., Vinokurova O.V., Eremina N.V., Prosanov I.Y., Khusnutdinov V.R., Chaikina M.V. Features of solid-phase mechanochemical synthesis of hydroxyapatite doped by copper and zinc ions. Journal of Solid State Chemistry. 2021;296:121973. doi: 10.1016/j.jssc.2021.121973
- Chaikina M.V., Bulina N.V., Prosanov I.Yu., Vinokurova O.V., Ischenko A.V. Structure formation of zinc-substituted hydroxyapatite during mechanochemical synthesis. Inorg. Mater. 2020;56(4):402–408. doi: 10.1134/S0020168520040044
- Bulina N.V., Chaikina M.V., Andreev A.S., Lapina O.B., Ishchenko A.V., Prosanov I.Yu., Gerasimov K.B., Solovyov L.A. Mechanochemical Synthesis of SiO44–-Substituted Hydroxyapatite, Part II – Reaction Mechanism, Structure, and Substitution Limit. Eur. J. Inorg. Chem. 2014;2014(28):4810–4825. doi: 10.1002/ejic.201402246
- Bulina N.V., Chaikina M.V., Prosanov I.Y. Mechanochemical Synthesis of Sr-Substituted Hydroxyapatite. Inorg. Mater. 2018;54:820–825. doi: 10.1134/S0020168518080034
- Bulina N.V., Makarova S.V., Prosanov I.Y., Vinokurova O.B., Lyakhov N.Z. Structure and thermal stability of fluorhydroxyapatite and fluorapatite obtained by mechanochemical method. J. Solid State Chem. 2020;282. Article No. 121076. doi: 10.1016/j.jssc.2019.121076
- Bulina N.V., Makarova S.V., Baev S.G., Matvienko A.A., Gerasimov K.B., Logutenko O.A., Bystrov V.S. A Study of Thermal Stability of Hydroxyapatite. Minerals. 2021;11. Article No. 1310. doi: 10.3390/min11121310
- Aryal S., Matsunaga K., Ching W.Y. Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP). J. Mech. Behav. Biomed. Mater. 2015;47:135–146. doi: 10.1016/j.jmbbm.2015.03.018
- Matsunaga K., Kuwabara A. First-principles study of vacancy formation in hydroxyapatite. Phys. Rev. B. 2007;75. Article No. 014102. doi: 10.1103/PhysRevB.75.014102
- Slepko A., Demkov A.A. First-principles study of the biomineral hydroxyapatite. Phys. Rev. B Condens. Matter Mater. Phys. 2011;84. Article No. 134108. doi: 10.1103/PhysRevB.84.134108
- Sadetskaya A.V., Bobrysheva N.P., Osmolowsky M.G., Osmolovskaya O.M., Voznesenskiy M.A. Correlative experimental and theoretical characterization of transition metal doped hydroxyapatite nanoparticles fabricated by hydrothermal method. Mater. Charact. 2021;173. Article No. 110911. doi: 10.1016/j.matchar.2021.110911
- Bystrov V.S., Coutinho J., Bystrova A.V., Dekhtyar Y.D., Pullar R.C., Poronin A., Palcevskis E., Dindune A., Alkan B., Durucan C. Computational study of the hydroxyapatite structures, properties and defects. J. Phys. D Appl. Phys. 2015;48:195302. doi: 10.1088/0022-3727/48/19/195302
- Bystrov V., Paramonova E., Avakyan L., Coutinho J., Bulina N. Simulation and Computer Study of Structures and Physical Properties of Hydroxyapatite with Various Defects. Nanomaterials. 2021;11. Article No. 2752. doi: 10.3390/nano11102752
- Avakyan L.A., Paramonova E.V., Coutinho J., Öberg S., Bystrov V.S., Bugaev L.A. Optoelectronics and defect levels in hydroxyapatite by first-principles. J. Chem. Phys. 2018;148. Article No 154706. doi: 10.1063/1.5025329
- Bystrov V.S., Avakyan L.A., Paramonova E.V., Coutinho J. Sub-Band Gap Absorption Mechanisms Involving Oxygen Vacancies in Hydroxyapatite. J. Chem. Phys. 2019. V. 123. doi: 10.1021/acs.jpcc.8b11350
- Bystrov V.S., Paramonova E.V., Avakyan L.A., Eremina N.V., Makarova S.V., Bulina N.V. Effect of Magnesium Substitution on Structural Features and Properties of Hydroxyapatite. Materials. 2023;16. Article No. 5945. doi: 10.3390/ma16175945
- Bystrov V.S., Paramonova E.V., Bystrova A.V., Avakyan L.A., Makarova S.V., Isaev D.D., Bulina N.V. Influence of the substitutions of Ca atoms on Sr, Mg, Mn, Fe atoms in the Hydroxyapatite structure and electric field changes on its physical properties important for biomedicine. In: VII Congress of Russian Biophysicists: collection of abstracts. Krasnodar, Russia: Kuban State Technological University, 2023:278-279. doi: 10.26297/SbR6.2023.001
- Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
- Heyd J., Scuseria G.E., Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003;118:8207–8215. doi: 10.1063/1.1564060
- Krukau A.V., Vydrov O.A., Izmaylov A.F., Scuseria G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006;125. Article No. 224106. doi: 10.1063/1.2404663
- Quantum ESPRESSO. https://www.quantum-espresso.org/ (accessed: 07.12.2023).
- Schlipf M., Gygi F. Optimization algorithm for the generation of ONCV pseudopotentials. Computer Phys. Commun. 2015;196. 36–44. doi: 10.1016/j.cpc.2015.05.011
- Hamann D.R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. 2013. V. B88. 085117. doi: 10.1103/PhysRevB.88.085117
- Nocedal J., Wright S.J. Numerical Optimization. New York: Springer, 2006.
- Avriel M. Nonlinear Programming: Analysis and Methods. Dover Publishing, 2003.
- Filippov S.V., Polozov R.V., Sivozhelezov V.S. Hypsometric mapping based visualization of (bio)macromolecular 3D structures: KIAM Preprint. Moscow, 2019. No. 61 (in Russ.). doi: 10.20948/prepr-2019-61
|
|
|