References
- Ferrell J.E.Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell. Biol. 2002;14:140-148. doi: 10.1016/S0955-0674(02)00314-9
- Angeli D., Ferrell J.E. Jr., Sontag E.D. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA. 2004;101:1822-1827. doi: 10.1073/pnas.0308265100
- Ozbudak E.M., Thattai M., Lim H.N., Shraiman B.I., Van Oudenaarden A. Multistability in the lactose utilization network of Escherichia coli. Nature. 2004;427(6976):737-740. doi: 10.1038/nature02298
- Smits W.K., Kuipers O.P., Veening J.W. Phenotypic variation in bacteria: the role of feedback regulation. Nat. Rev. Microbiol. 2006;4(4):259-271. doi: 10.1038/nrmicro1381
- Dubnau D., Losick R. Bistability in bacteria. Mol. Microbiol. 2006;61:564-572. doi: 10.1111/j.1365-2958.2006.05249.x
- Piggot P. Epigenetic switching: bacteria hedge bets about staying or moving. Curr. Biol. 2010;20(11):R480-482. doi: 10.1016/j.cub.2010.04.020
- Avendaño M.S., Leidy C., Pedraza J.M. Tuning the range and stability of multiple phenotypic states with coupled positive-negative feedback loops. Nat. Commun. 2013;4. Article No 2605. doi: 10.1038/ncomms3605
- Kaern M., Elston T.C., Blake W.J., Collins J.J. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 2005;6:451-464. doi: 10.1038/nrg1615
- Sureka K., Ghosh B., Dasgupta A., Basu J., Kundu M., Bose I. Positive feedback and noise activate the stringent response regulator rel in mycobacteria. PLoS One. 2008;3(3). Article No e1771.
- To T.L., Maheshri N. Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science. 2010;327(5969):1142-1145. doi: 10.1126/science.1178962
- Zheng X.D., Yang X.Q., Tao Y. Bistability, probability transition rate and first-passage time in an autoactivating positive-feedback loop. PLoS One. 2011;6(3). Article No e17104. doi: 10.1371/journal.pone.0017104
- Shu C.C., Chatterjee A., Dunny G., Hu W.S., Ramkrishna D. Bistability versus bimodal distributions in gene regulatory processes from population balance. PLoS Comput. Biol. 2011;7(8). Article No e1002140. doi: 10.1371/journal.pcbi.1002140
- Ghosh S., Banerjee S., Bose I. Emergent bistability: Effects of additive and multiplicative noise. Eur. Phys. J. E Soft. Matter. 2012;35:11. doi: 10.1140/epje/i2012-12011-4
- Thomas P., Popović N., Grima R. Phenotypic switching in gene regulatory networks. Proc. Natl. Acad. Sci. USA. 2014;111(19):6994-6999. doi: 10.1073/pnas.1400049111
- Casadesús J., Low D.A. Programmed heterogeneity: epigenetic mechanisms in bacteria. J. Biol. Chem. 2013;288:13929-13935. doi: 10.1074/jbc.R113.472274
- Stewart E.J., Madden R., Paul G., Taddei F. Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 2005;3(2):e45. doi: 10.1371/journal.pbio.0030045
- Ghosh S., Sureka K., Ghosh B., Bose I., Basu J., Kundu M. Phenotypic heterogeneity in mycobacterial stringent response. BMC Syst. Biol. 2011;5:18. doi: 10.1186/1752-0509-5-18
- Kotte O., Volkmer B., Radzikowski J.L., Heinemann M. Phenotypic bistability in Escherichia coli's central carbon metabolism. Mol. Syst. Biol. 2014;10:736. doi: 10.15252/msb.20135022
- Klapper I., Gilbert P., Ayati B.P., Dockery J., Stewart P.S. Senescence can explain microbial persistence. Microbiology. 2007;153:3623-3630. doi: 10.1099/mic.0.2007/006734-0
- Balaban N.Q., Merrin J., Chait R., Kowalik L., Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004;305:1622-1625. doi: 10.1126/science.1099390
- Verstraeten N., Knapen W., Fauvart M., Michiels J. A Historical Perspective on Bacterial Persistence. Methods Mol. Biol. 2016;1333:3-13. doi: 10.1007/978-1-4939-2854-5_1
- Dörr T., Vulić M., Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 2010;8(2). Article No e1000317. doi: 10.1371/journal.pbio.1000317
- Fasani R.A., Savageau M.A. Molecular mechanisms of multiple toxin-antitoxin systems are coordinated to govern the persister phenotype. Proc. Natl. Acad. Sci. USA. 2013;110:E2528-2537. doi: 10.1073/pnas.1301023110
- Gelens L., Hill L., Vandervelde A., Danckaert J., Loris R. A general model for toxin-antitoxin module dynamics can explain persister cell formation in E. coli. PLoS Comput. Biol. 2013;9. Article No e1003190. doi: 10.1371/journal.pcbi.1003190
- Likhoshvai V.A., Khlebodarova T.M. Coordination of cell growth and DNA replication: A mathematical model. Mathematical Biology and Bioinformatics. 2013;8(1):66-92 (in Russ.). doi: 10.17537/2013.8.66
- Likhoshvai V.A., Khlebodarova T.M. Mathematical modeling of bacterial cell cycle: The problem of coordinating genome replication with cell growth. J. Bioinform. Comput. Biol. 2014;12(3). Article No. 1450009. doi: 10.1142/S0219720014500097
- Donachie W.D. Relationship between cell size and time of initiation of DNA replication. Nature. 1968;219:1077-1079. doi: 10.1038/2191077a0
- Cooper S., Helmstetter C.E. Chromosome replication and the division cycle of Escherichia coli B/r. J. Mol. Biol. 1968;31:619-644. doi: 10.1016/0022-2836(68)90425-7
- Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Ed. Neidhardt F.C. Washington D.C.: American Society for Microbiology; 1987. 1654 p.
- Kennell D., Riezman H. Transcription and translation initiation frequencies of the Escherichia coli lac operon. J. Mol. Biol. 1977;114:1-21. doi: 10.1016/0022-2836(77)90279-0
- Zaritsky A., Woldringh C.L. Chromosome replication rate and cell shape in Escherichia coli: lack of coupling. J. Bacteriol. 1978;135(2):581-587.
- Pedersen S., Reeh S., Friesen, D.J. Functional mRNA half-lives in E. coli. Mol. Gen. Genet. 1978;166:329-336.
- Mosteller R.D., Goldstein R.V., Nishimoto K.R. Metabolism of individual proteins in exponentially growing Escherichia coli. J. Biol. Chem. 1980;255(6):2524-2532.
- Selinger D.W., Saxena R.M., Cheung K.J., Church G.M., Rosenow C. Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res. 2003;13(2):216-223. doi: 10.1101/gr.912603
- Bernstein J.A., Lin P.H., Cohen S.N., Lin-Chao S. Global analysis of Escherichia coli RNA degradosome function using DNA microarrays. Proc. Natl. Acad. Sci. USA. 2004;101(9):2758-2763. doi: 10.1073/pnas.0308747101
- Jayapal K.P., Sui S., Philp R.J., Kok Y.J., Yap M.G., Griffin T.J., Hu W.S. Multitagging proteomic strategy to estimate protein turnover rates in dynamic systems. J. Proteome Res. 2010;9(5):2087-2097. doi: 10.1021/pr9007738
- Taniguchi Y., Choi P.J., Li G.W., Chen H., Babu M., Hearn J., Emili A., Xie X.S. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science. 2010;329(5991):533-538. doi: 10.1126/science.1188308
- Inouye M., Shaw J., Shen C. The assembly of a structural lipoprotein in the envelope of Escherichia coli. J. Biol. Chem. 1972;247(24):8154-8159.
- Schaechter M., Maaloe O., Kjeldgaard N.O. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J. Gen. Microbiol. 1958;19:592-606. doi: 10.1099/00221287-19-3-592
- Schaechter M., Williamson J.P., Hood J.R. Jr., Koch A.L. Growth, cell and nuclear divisions in some bacteria. J. Gen. Microbiol. 1962;29:421-434. doi: 10.1099/00221287-29-3-421
- Yoshikawa H., O'Sullivan A., Sueoka N. Sequential replication of the Bacillus subtilis chromosome. III. Regulation of initiation. Proc. Natl. Acad. Sci. USA. 1964;52:973-980. doi: 10.1073/pnas.52.4.973
- Zaritsky A., Vischer N., Rabinovitch A. Changes of initiation mass and cell dimensions by the 'eclipse'. Mol. Microbiol. 2007;63:15-21. doi: 10.1111/j.1365-2958.2006.05501.x
- Zaritsky A., Wang P., Vischer N.O. Instructive simulation of the bacterial cell division cycle. Microbiology. 2011;157:1876-1885. doi: 10.1099/mic.0.049403-0
- Grant M.A., Saggioro C., Ferrari U., Bassetti B., Sclavi B., Cosentino Lagomarsino M. DnaA and the timing of chromosome replication in Escherichia coli as a function of growth rate. BMC Syst. Biol. 2011;5:201. doi: 10.1186/1752-0509-5-201
- Soo V.W., Cheng H.Y., Kwan B.W., Wood T.K. De novo synthesis of a bacterial toxin/antitoxin system. Sci. Rep. 2014;4:4807. doi: 10.1038/srep04807
- Keren I., Shah D., Spoering A., Kaldalu N., Lewis K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 2004;186:8172-8180. doi: 10.1128/JB.186.24.8172-8180.2004
- Shah D., Zhang Z., Khodursky A., Kaldalu N., Kurg K., Lewis K. Persisters: a distinct physiological state of E. coli. BMC Microbiol. 2006;6:53. doi: 10.1186/1471-2180-6-53
|
|
|