Russian version English version
Volume 12   Issue 2   Year 2017
Kashirina N.I., Lakhno V.D.

Exponentially Correlated Gaussians for Simulating Of Localized and Autolocalized States in Polar Media

Mathematical Biology & Bioinformatics. 2017;12(2):273-301.

doi: 10.17537/2017.12.273.

References

  1. Boys S.F. The integral formulae for the variational solution of the molecular many-electron wave equations in terms of gaussian functions with direct electronic correlation. Proc. R. Soc. London Ser. A. 1960;258(1294):402-411. doi: 10.1098/rspa.1960.0195
  2. Singer K. The use of Gaussian (exponential guadratic) wave functions in molecular problems. I. General formulae for the evaluation of integrals. Proc. R. Soc. London Ser. A. I960;258(1294):412-420.
  3. Komasa J., Cencek W., Rychlewski J. Explicitly correlated Gaussian functions in variational calculations: The ground state of the beryllium atom. Phys. Rev. A. 1995;52(6):4500-4507. doi: 10.1103/PhysRevA.52.4500
  4. Cencek W., Kutzelnigg W. Accurate relativistic energies of one and twoelectron systems using Gaussian wave functions. J. Chem. Phys. 1996;105(14):5878-5885. doi: 10.1063/1.472429
  5. Sandberg J., Rinkevicius Z. An algorithm for the efficient evaluation of two-electron repulsion integrals over contracted Gaussian-type basis functions. J. Chem. Phys. 2012;137(23). Article No. 234105. doi: 10.1063/1.4769730
  6. Alexander S.A., Monkhorst H.J., Roeland R., Szalewicz K. Obtaining microhartree accuracy for two electron systems with random tempered Gaussian type geminals. J. Chem. Phys. 1990;93(6):4230-4235. doi: 10.1063/1.458755
  7. Wenzel K.B. Rapidly converging high-precision He ground state energies through the use of systematically constructed Gaussian geminals. Chem. Phys. Lett. 1994;224(1, 2):155-159.
  8. Rybak S., Szalewicz K., Jeziorski B., Jaszunski M. Intraatomic correlation effects for the He–He dispersion and exchange-dispersion energies using explicitly correlated Gaussian geminals. The Journal of Chemical Physics. 1987;86(10):5652-5659. doi: 10.1063/1.452542
  9. Rybak S., Szalewicz K., Jeziorski B. An accurate calculation of the first order interaction energy for the helium dimer. J. Chem. Phys. 1989;91(8):4779-4784. doi: 10.1063/1.456767
  10. Jeziorski B., Szalewicz K. High-accuracy Compton profile of molecular hydrogen from explicitly correlated Gaussian wave function. Phys. Rev. A. 1979;19(6):2360-2365. doi: 10.1103/PhysRevA.19.2360
  11. Kołos W., Monkhorst H.J., Szalewicz K. Energy unresolved differential cross section for electron scattering by H2. J. Chem. Phys. 1982;77(3):1323-1334. doi: 10.1063/1.443955
  12. Moszyński R., Szalewicz K. Accurate electron densities of the hydrogen molecule. J. Phys. B. 1987;20(7):347-4365. doi: 10.1088/0022-3700/20/17/015
  13. Komasa J., Thakkar A.J. Accurate multipole moments for H2 and D2 including the effects of electron correlation and molecular vibration and rotation. Mol. Phys. 1993;78(4):1039-1046. doi: 10.1080/00268979300100671
  14. Cencek W., Kutzelnigg W. Accurate relativistic energies of one and two electron systems using Gaussian wave functions. J. Chem. Phys. 1998;105(14):5878-5885. doi: 10.1063/1.472429
  15. Rychlewski J., Cencek W., Komasa J. The equivalence of explicitly correlated Slater and Gaussian functions in variational quantum chemistry computations: The ground state of H2. Chem, Phys. Lett. 1994;229(6):657-660. doi: 10.1016/0009-2614(94)01108-7
  16. Szalewicz K., Jeziorski B., Monkhorst H. J., Zabolitzky J.G. Atomic and molecular correlation energies with explicitly correlated Gaussian geminals. I. Secondorder perturbation treatment for He, Be, H2, and LiH. J. Chem. Phys. 1983;78(3):1420-1430. doi: 10.1063/1.444884
  17. Kozlowski P.M., Adamowicz L. An effective method for generating nonadiabatic manybody wave function using explicitly correlated Gaussiantype functions. J. Chem. Phys. 1991;95(9):6681-6698. doi: 10.1063/1.461538
  18. Gallagher T.F. Rydberg atoms. Reports on Progress in Physics. 1988;51(2):143-188. doi: 10.1088/0034-4885/51/2/001
  19. Bendkowsky V., Butscher B., Nipper J., Shaffer J.P., Löw R., Pfau T. Observation of ultralong-range Rydberg molecules. Nature. 2009;458:1005-1008. doi: 10.1038/nature07945
  20. Kazimierczuk T., Fröhlich D., Scheel S., Stolz H., Bayer M. Giant Rydberg excitons in the copper oxide Cu2O. Nature. 2014;514:343-347. doi: 10.1038/nature13832
  21. Pecar S.I. Local quantum states of electrons in an ideal ionic crystal. Journal of Experimental and Theoretical Physics. 1946;16(4):341-348 (in Russ.).
  22. Pecar S.I. Investigations of the Electron Theory of Crystals. Washington, US; 1963.
  23. Deigen M.F. Trudy IF AN USSR (Proceedings of the Institute of Physics of the Academy of Sciences of Ukraine). 1954;5:105-111 (in Russ.).
  24. Lakhno V.D. Dynamical polaron theory of the hydrated electron. Chem. Phys. Lett. 2007;437(4-6):198-202. doi: 10.1016/j.cplett.2007.02.035
  25. Lakhno V.D., Volokhova A.V., Zemlyanaya E.V., Amirkhanov I.V., Puzynin I.V., Puzynina T.P. Polaron model of the formation of hydrated electron states. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2015;9(1):75-80. doi: 10.1134/S1027451015010140
  26. Kashirina N.I., Lakhno V.D. Continuum Model of the One-Dimensional Holstein Bipolaron in DNA. Mathematical Biology and Bioinformatics. 2014;9(2):430-437 (in Russ.). doi: 10.17537/2014.9.430
  27. Lepoutre G. Colloque Weyl: a short history. J. Phys. Chem. 1984;88(17):3772-3780. doi: 10.1021/j150661a001
  28. Edwards P.P. Polarons, bipolarons, and possible high-Tc superconductivity in metal-ammonia solutions. J. Supercond and Nov. Mag. 2000;13(6):933-946.
  29. Edwards P.P. From solvated electrons to metal anions: electronic structure and dynamics. J. Solution Chem. 1985;14(3):187-208. doi: 10.1007/BF00647062
  30. Fröhlich H. Electrons in lattice fields. Advan. Phys. 1954;3(11):325-361. doi: 10.1080/00018735400101213
  31. Miyake S.J. Strong-coupling limit of the polaron ground state. J. Phys. Soc. Japan. 1975;38(1):181-182. doi: 10.1143/JPSJ.38.181
  32. Kashirina N.I., Lakhno V.D. In: Matematicheskaia biologiia i bioinformatika (Mathematical Biology and Bioinformatics): Proceedings of II International Conference (Pushchino, September 7-13, 2008). Ed. V.D. Lakhno. Moscow: MAKS Press; 2008. P. 22-23 (in Russ.).
  33. Gabdullin R.R. Nonspherical solutions of the polaron equation. Doklady Physics. 1993;38(11):452-455.
  34. Buimistrov V.M., Pecar S.I. Quantum states of particles coupled with harmonically oscillating continuum with arbitrary strong interactions 1. The case of absence of translational symmetry. J. Experimental and Theoretical Physics (JETP). 1957;5(5):970-975.
  35. Kashirina N.I., Lakhno V.D., Sychyov V.V. Correlation effects and Pekar bipolaron (arbitrary electron-phonon interaction). Physica status solidi (b). 2003;239(1):174-184. doi: 10.1002/pssb.200301818
  36. Kashirina N.I., Lakhno V.D., Sychyov V.V. Polaron effects and electron correlations in two-electron systems: Arbitrary value of electron-phonon interaction. Physical Review B. 2005;71(13):134301-1-13431-14.
  37. Kashirina N.I., Lakhno V.D. Mathematical Modeling of Self-Localized States in Condensed Matter. Moscow: Fizmatlit; 2013. 292 p. (in Russ.).
  38. Alexander S.A., Monkhorst H.J., Roeland R., Szalewicz K. Microhartree accuracy for twoelectron systems with randomtempered Gaussiantype geminals. The Journal of Chemical Physics. 1990;93:4230-4235. doi: 10.1063/1.458755
  39. Baker J.D., Freund D.E., Hill R.N., Morgan III J.D. Radius of convergence and analytic behavior of the 1/Z expansion. Phys. Rev. A. 1990;41(3):1247-1273. doi: 10.1103/PhysRevA.41.1247
  40. Gombash P. Many Particle Problem in Quantum Mechanics (Theory and Methods of Solution). Moscow: Publishing House “Foreign Literature”; 1953. 276 p. (in Russ.).
  41. Pashitskii E.A., Mashkevich S.V., Vilchynskyy S.I. Superfluid Bose liquid with a suppressed BEC and an intensive pair coherent condensate as a model of 4He. Phys. Rev. Lett. 2002;89(7):075301-1-075301-4. doi: 10.1103/PhysRevLett.89.075301
  42. Pashitskii E.A. The role of pair correlations in the formation of the ground state and the elementary excitation spectrum in a superfluid Bose liquid. Low Temperature Physics. 1999;25:81. doi: 10.1063/1.593709
  43. Vinetskii V.L., Pashitskii E.A. The superfluidity of a charged Bose gas and the bipolaron mechanism of superconductivity. Ukrainian Physical Journal. 1975;20(2):338-341 (in Russ.).
  44. Vinetskii V.L., Pashitskii E.A. Bipolaron states in crystals with an anisotropic effective mass of free charge carriers. Physics of the Solid State. 1983;25:1744-1747 (in Russ.).
  45. Thompson J.S. Electrons in liquid ammonia. Oxford: Clarendon Press, 1976: 297.
  46. Deigen M.F. Theory of the magnetic properties of metal-ammonia solutions. J. Experimental and Theoretical Physics (JETP). 1954;26(3):293-299 (in Russ.).
  47. Deigen M.F. Optical properties and electrical conductivity of metal-ammonia solutions. J. Experimental and Theoretical Physics (JETP). 1954;26(3):300-306 (in Russ.).
  48. McConnell H., Holm C.H. Electronic structure of sodium-ammonia solutions by nuclear magnetic resonance. J. Chem. Phys. 1957;26(6):1517-1521. doi: 10.1063/1.1743572
  49. Larsen D.M. Giant binding of D− centers in polar crystals. Phys. Rev. B. 1981;23(2):628-631. doi: 10.1103/PhysRevB.23.628
  50. Suprun S.G., Moyzhes B.Ya. Role of electron correlations in formation of Pekar bipolaron. Physics of the Solid State. 1982;24(5):1571-1577 (in Russ.).
  51. Buimistrov V.M., Pecar S.I. The quantum states of particles coupled with arbitrary strength to a harmonically oscillating continuum. 2. The case of absence of translational symmetry. J. Experimental and Theoretical Physics (JETP). 1958;6(5):977-980.
  52. Ogg R.A. Bose-Einstein condensation of trapped electron pairs. Phase separation and superconductivity of metal-ammonia solutions. Phys. Rev. 1946;69(5-6):243-244. doi: 10.1103/PhysRev.69.243
  53. Van Vleck J.H. Paramagnetic relaxation times for titanium and chrome alum. Phys. Rev.  1940:57(5):426-447. doi: 10.1103/PhysRev.57.426
  54. Holstein T. Studies of polaron motion. Part II. The “small” polaron. Annals of Physics. 1959;8:343-389. doi: 10.1016/0003-4916(59)90003-X

 

Table of Contents Original Article
Math. Biol. Bioinf.
2017;12(2):273-301
doi: 10.17537/2017.12.273
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024