Russian version English version
Volume 12   Issue 2   Year 2017
Lunina N.L., Petrova T.E., Urzhumtsev A.G., Lunin V.Y.

The Use of Connected Masks for Reconstructing the Single Particle Image from X-Ray Diffraction Data. III. Maximum-Likelihood Based Strategies to Select Solution of the Phase Problem

Mathematical Biology & Bioinformatics. 2017;12(2):521-535.

doi: 10.17537/2017.12.521.

References

  1. Barends T. R. M., Foucar L., Botha S., Doak R. B., Shoeman R. L.,Nass K., Koglin J.E.,Williams G. J., Boutet S.,Messerschmidt M., Schlichting I. De novo protein crystal structure determination from X-ray free-electron laser data. Nature. 2014;505:244-247. doi: 10.1038/nature12773
  2. Chapman H.N., Fromme P., Barty A., White T.A., Kirian R.A., Aquila A., Hunter M.S, Schulz J., DePonte D.P, Weierstall U., et al. Femtosecond X-ray protein nanocrystallography. Nature. 2011;470:73-77. doi: 10.1038/nature09750
  3. Boutet S., Lomb L., Williams G.J., Barends T.R., Aquila A., Doak R.B., Weierstall U., DePonte D.P., Steinbrener J., Shoeman R.L., et al. High-resolution protein structure determination by serial femtosecond crystallography. Science. 2012;337:362-364. doi: 10.1126/science.1217737
  4. Redecke L., Nass K., DePonte D.P., White T.A., Rehders D., Barty A., Stellato F., Liang M., Barends T.R.M., Boutet S., et al. Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser. Science. 2013;339:227-230. doi: 10.1126/science.1229663
  5. Lomb L., Barends T.R.M., Kassemeyer S., Aquila A., Epp S.W., Erk B., Foucar L., Hartmann R., Rudek B., Rolles D., et al. Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser. Physical Review B. 2011;84:214111. doi: 10.1103/PhysRevB.84.214111
  6. Johansson L.C., Arnlund D., White T.A., Katona G., DePonte D.P., Weierstall U., Doak R.B., Shoeman R.L., Lomb L., Malmerberg E., et al. Lipidic phase membrane protein serial femtosecond crystallography. Nature Methods. 2012;9:263-265. doi: 10.1038/nmeth.1867
  7. Kern J., Alonso-Mori R., Hellmich J., Tran R., Hattne J., Laksmono H., Glöckner C., Echols N., Sierra R.G., Sellberg J., et al. Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. Proceedings of the National Academy of Sciences of the USA. 2012;109:9721-9726.
  8. Lunin V.Y., Lunina N.L., Petrova T.E. The biological crystallography without crystals. Mathematical Biology and Bioinformatics. 2017;12(1):55-72 (in Russ.). doi: 10.17537/2017.12.55
  9. Thibault P., Elser V., Jacobsen C., Shapiro D., Sayre D. Reconstruction of a yeast cell from X-ray diffraction data. Acta Crystallographica Section A: Foundations of Crystallography. 2006;62:248-261. doi: 10.1107/S0108767306016515
  10. Rodriguez J.A., Xu R., Chen C.C., Huang Z., Jiang H., Chen A.L., Raines K.S., Pryor A. Jr, Nam D., Wiegart L., Song C., Madsen A., Chushkin Y., Zontone F., Bradley P.J., Miao J. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells. IUCr Journal. 2015;2:575-583. doi: 10.1107/S205225251501235X
  11. Takayama Y., Yonekura K. Cryogenic coherent X-ray diffraction imaging of biological samples at SACLA: a correlative approach with cryo-electron and light microscopy. Acta Crystallographica Section A: Foundations and Advances. 2016;72:179-189. doi: 10.1107/S2053273315023980
  12. Munke A., Andreasson J, Aquila A., Awel S., Ayyer K., Barty A., Bean R.J., Berntsen P., Bielecki J., Boutet S. et al. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source. Sci. Data. 2016;3. Article No. 160064. doi: 10.1038/sdata.2016.64
  13. Ekeberg T., Svenda M., Abergel C., Maia F.R.N.C., Seltzer V., Claverie J.M., Hantke M., Jönsson O., Nettelblad C., van der Schot G. et al. Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser. Physical Review Letters. 2015;114. Article No. 098102.
  14. Song C., Jiang H., Mancuso A., Amirbekian B., Peng L., Sun R., Shah S.S., Zhou Z.H., Ishikawa T., Miao J. Quantitative Imaging of Single, Unstained Viruses with Coherent X Rays. Physical Review Letters. 2008;101. Article No. 158101. doi: 10.1103/PhysRevLett.101.158101
  15. Seibert M.M., Ekeberg T, Maia F.R.N.C., Svenda M., Andreasson J.,Jönsson O., Odic D., Iwan B., Rocker A., Westphal1 D. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature. 2011;470:78-82. doi: 10.1038/nature09748
  16. Van der Schot G., Svenda M., Maia F.R.N.C., Hantke M., DePonte D., Seibert M.M., Aquila A., Schulz J., Kirian R., Liang M. et al. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nature Communication. 2015;6. Article No. 5704. doi: 10.1038/ncomms6704
  17. Fienup J.R. Reconstruction of an object from the modulus of its Fourier transform. Optics Letters. 1978;3(1):27-29. doi: 10.1364/OL.3.000027
  18. Urzhumtseva L., Klaholz B., Urzhumtsev A. On effective and optical resolutions of diffraction data sets. Acta Crystallographica Section D: Biological Crystallography. 2013;69:625-634. doi: 10.1107/S0907444913016673
  19. Sayre D. Some implications of a theorem due to Shannon. Acta Crystallographica. 1952;5:843. doi: 10.1107/S0365110X52002276
  20. Lunin V.Y., Lunina N.L., Petrova T.E., Baumstark M.W., Urzhumtsev A.G. Mask-based approach to phasing of single-particle diffraction data. Acta Crystallographica Section D: Structural Biology. 2016;72:147-157. doi: 10.1107/S2059798315022652
  21. Marchesini S., He H., Chapman H.N., Hau-Riege S.P., Noy A., Howells M.R., Weierstall U., Spence J.H.C. X-ray image reconstruction from a diffraction pattern alone. Phis. Rev. B. 2003;68. Article No. 140101(R).
  22. Maia F.R.N.C., Ekeberg T., Spoel D., Hajdu J. Hawk: the image reconstruction package for coherent X-ray diffractive imaging. J. Applied Crystallography. 2010;43:1535-1539. doi: 10.1107/S0021889810036083
  23. Bricogne G. Geometric sources of redundancy in intensity data and their use for phase determination. Acta Crystallographica Section A: Foundations of Crystallography. 1974;30:349-405. doi: 10.1107/S0567739474010722
  24. Rodriguez J.A., Xu R.,Chen C.-C., Zou Y., Miao J. Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. J. Applied Crystallography. 2013;46:312-318. doi: 10.1107/S0021889813002471
  25. Miao J., Kirz J., Sayre D. The oversampling phasing method. Acta Crystallographica Section D: Biological Crystallography. 2000;56:1312-1315. doi: 10.1107/S0907444900008970
  26. He H., Su, W.P. Direct phasing of protein crystals with high solvent content. Acta Crystallographica Section A: Foundations of Crystallography. 2015;71:92-98. doi: 10.1107/S2053273314024097
  27. Bricogne G. Methods and programs for direct-space exploitation of geometric redundancies. Acta Crystallographica Section A: Foundations of Crystallography. 1976;32:832-847. doi: 10.1107/S0567739476001691
  28. Marchesini S. A unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum. 2007;78. Article No. 011301.
  29. Zhang K.Y.J., Cowtan K.D., Main P. Phase improvement by iterative density modification. In: International Tables for Crystallography. V. F. Second Edition. Eds. Arnold E., Himmel D.M., Rossmann M.G. Chichester: John Wiley and Sons, 2012:385-400. doi: 10.1107/97809553602060000847
  30. Millane R., Lo V.L. Iterative projection algorithms in protein crystallography. I. Theory. Acta Crystallographica Section A: Foundations of Crystallography. 2013;69:517-527. doi: 10.1107/S0108767313015249
  31. Wang B.C. Resolution of phase ambiguity in macromolecular crystallography. Methods in Enzymology. 1985;115:90-112. doi: 10.1016/0076-6879(85)15009-3
  32. Loh N.-T.D., Elser V. Reconstruction algorithm for single-particle diffraction imaging experiments. Physical Review E. 2009;80. Article No. 026705. doi: 10.1103/PhysRevE.80.026705
  33. Elser V. Solution of the crystallographic phase problem by iterated projections. Acta Crystallographica Section A: Foundations of Crystallography. 2003;59:201-209. doi: 10.1107/S0108767303002812
  34. Lunin V.Y., Urzhumtsev A.G., Skovoroda T.P. Direct low-resolution phasing from electron-density histograms in protein crystallography. Acta Crystallographica Section A: Foundations of Crystallography. 1990;46:540-544. doi: 10.1107/S0108767390003464
  35. Lunin V.Y., Lunina N.L., Urzhumtsev A.G. Connectivity properties of high-density regions and ab initio phasing at low resolution. Acta Crystallographica Section A: Foundations of Crystallography. 2000;56:375-382. doi: 10.1107/S0108767300004633
  36. Petrova T.E., Lunin V.Y., Podjarny A.D. Ab initio low-resolution phasing in crystallography of macromolecules by maximization of likelihood. Acta Crystallographica Section D: Biological Crystallography. 2000;56:1245-1252. doi: 10.1107/S0907444900009343
  37. Lunin V.Y., Lunina N.L., Petrova T.E. The use of connected masks for reconstructing the single particle image from x-ray diffraction data. Mathematical Biology and Bioinformatics. 2015;10(Suppl.):t1-t19. doi: 10.17537/2015.10.t1
  38. Baker D., Krukowski A.E., Agard D.A. Uniqueness and the ab initio phase problem in macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography. 1993;49:186-192. doi: 10.1107/S0907444992008801
  39. Lunin V.Y., Urzhumtsev A.G. Improvement of protein phases by coarse model modification. Acta Crystallographica Section A: Foundations of Crystallography. 1984;40:269-277. doi: 10.1107/S0108767384000544
  40. Lunin V.Y., Skovoroda T.P. R-free likelihood-based estimates of errors for phases calculated from atomic models. Acta Crystallographica Section A: Foundations of Crystallography. 1995;51:880-887. doi: 10.1107/S010876739500688X
  41. Urzhumtsev A.G., Skovoroda T.P., Lunin V.Y. A procedure compatible with X-PLOR for the calculation of electron-density maps weighted using an R-free-likelihood approach. J. Applied Crystallography. 1996;29:741-744. doi: 10.1107/S0021889896007194
  42. Read R.J. Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors. Acta Crystallographica Section A: Foundations of Crystallography. 1986;42:140-190. doi: 10.1107/S0108767386099622
  43. Broser M., Gabdulkhakov A., Kern J., Guskov A., Müh F., Saenger W., Zouni A. Crystal structure of monomeric Photosystem II from Thermosynechococcus elongatus at 3.6 Å resolution. J. Biol. Chem. 2010;285:26255-26262. doi: 10.1074/jbc.M110.127589
  44. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Research. 2000;28:235-242. doi: 10.1093/nar/28.1.235
  45. Matthews B.M. Solvent content of protein crystals. Journal of Molecular Biology. 1968;33:491-497. doi: 10.1016/0022-2836(68)90205-2
  46. Weichenberger C.X., Rupp B. Ten years of probabilistic estimates of biocrystal solvent content: new insights via nonparametric kernel density estimate. Acta Crystallographica Section D: Biological Crystallography. 2014;70:1579-1588. doi: 10.1107/S1399004714005550
  47. Urzhumtsev A., Afonine P.V., Adams P.D. On the use of logarithmic scales for analysis of diffraction data. Acta Crystallographica Section D: Biological Crystallography. 2009;65:1283-1291. doi: 10.1107/S0907444909039638
Table of Contents Original Article
Math. Biol. Bioinf.
2017;12(2):521-535
doi: 10.17537/2017.12.521
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References Translation into English
Math. Biol. Bioinf.
2018;13(Suppl.):t70-t83
doi: 10.17537/2018.13.t70

Full text (eng., pdf)

 

  Copyright IMPB RAS © 2005-2024