Russian version English version
Volume 12   Issue 2   Year 2017
Klyshnikov K.U., Ovcharenko Ε.ΐ., Borisov V.G., Sizova I.N., Burkov N.N., Batranin A.V., Kudryavtseva Yu.A., Zaharov Yu.N., Shokin Yu.I.

Modeling Of the Hemodynamics of Vascular Prostheses "KemAngiprotez" in silico

Mathematical Biology & Bioinformatics. 2017;12(2):559-569.

doi: 10.17537/2017.12.559.

References

  1. Stepanov N.G. Patient's quality of life and lifespan. Angiology and Vascular Surgery. 2004;10(4):13-16 (in Russ.).
  2. Savel'ev V.S. In: 50 lektsii po khirurgii (50 lectures on surgery). Moscow: Media Medica, 2003. P. 39-48 (in Russ.).
  3. Burkov N.N., Zhuravleva I.Y., Barbarash L.S. Prediction of thrombotic and stenotic complications after ‘KemAngioprotez’ biological prosthesis implantation by means of mathematical model. Complex Issues of Cardiovascular Diseases. 2013;4:5-11 (in Russ.).
  4. Ivchenko A.O., Shvedov A.N., Ivchenko O.A. Vascular prostheses used in infrainguinal arterial reconstruction. Bulletin of Siberian Medicine. 2017;16(1):132-139 (in Russ.). doi: 10.20538/1682-0363-2017-1-132-139
  5. Martin C., Sun W. Biomechanical characterization of aortic valve tissue in humans and common animal models. Journal of Biomedical Materials Research. Part A. 2012;100(6). doi: 10.1002/jbm.a.34099
  6. Barbarash L.S., Ivanov S.V., Zhuravleva I.Yu., Anufriev A.I., Kazachek Ya.V., Kudriavtzeva Yu.A., Zinetz M.G. Twelve-year experience of bioprosthesis implantation into infrainguinal arteries. Angiology and Vascular Surgery. 2006;12(3):91-97 (in Russ.).
  7. Mukhamadiyarov R.A., Rutkovskaya N.V., Milto I.V., Vasyukov G.Yu., Barbarash L.S. Pathogenetic parallels between native and bioprosthetic aortic valve calcification. Genes & Cells. 2016;11(3):72-79 (in Russ.).
  8. Rukhlenko O.S., Dudchenko O.A., Zlobina K.E., Guria G.T. Mathematical modeling of intravascular blood coagulation under wall shear stress. PLoS ONE. 2015;10(7):e0134028. doi: 10.1371/journal.pone.0134028
  9. Rumbaut R.E., Thiagarajan P. In: Platelet-Vessel Wall Interactions in Hemostasis and Thrombosis. San Rafael (CA): Morgan & Claypool Life Sciences, 2010. P. 11-27.
  10. Ruggeri Z.M. The role of von Willebrand factor in thrombus formation. Thrombosis research. 2007;120(Suppl. 1):5-9. doi: 10.1016/j.thromres.2007.03.011
  11. Qian M., Niu L., Wong K.K., Abbott D., Zhou Q., Zheng H. Pulsatile flow characterization in a vessel phantom with elastic wall using ultrasonic particle image velocimetry technique: the impact of vessel stiffness on flow dynamics. IEEE Trans Biomed Eng. 2014;61(9):2444-2450. doi: 10.1109/TBME.2014.2320443
  12. Schiller N.K., Franz T., Weerasekara N.S., Zilla P., Reddy B.D. A simple fluid-structure coupling algorithm for the study of the anastomotic mechanics of vascular grafts. Comput Methods Biomech Biomed Engin. 2010;13(6):773-781. doi: 10.1080/10255841003606124
  13. Fojas J., De Leon R. Carotid Artery Modeling Using the Navier-Stokes Equations for an Incompressible, Newtonian and Axisymmetric Flow. APCBEE Procedia. 2013;7:86-92. doi: 10.1016/j.apcbee.2013.08.017
  14. Yeow S. L., Leo H. L. Hemodynamic study of flow remodeling stent graft for the treatment of highly angulated abdominal aortic aneurysm. Computational and Mathematical Methods in Medicine. 2016. doi: 10.1155/2016/3830123
  15. Wen J, Zheng TH, Jiang WT, Deng XY, Fan YB. A comparative study of helical-type and traditional-type artery bypass grafts: numerical simulation. ASAIO J. 2011;57(5):399-406. doi: 10.1097/MAT.0b013e3182246e0a
  16. Pinto S., Doutel E., Campos J., Miranda J. Blood analog fluid flow in vessels with stenosis: Development of an openfoam code to simulate pulsatile flow and elasticity of the fluid. APCBEE Procedia. 2013;7:73-79. doi: 10.1016/j.apcbee.2013.08.015
  17. Loth F., Fischer P.F., Bassiouny H.S. Blood flow in end-toside anastomoses. Ann. Rev. Fluid Mech. 2008;40:367-393. doi: 10.1146/annurev.fluid.40.111406.102119
  18. Kabinejadian F., Ghista D., Nezhadian M.K., Leo H.L. Hemodynamics of coronary artery bypass grafting: conventional vs. innovative anastomotic configuration designs for enhancing patency. Coronary Graft Failure State of the Art. 2016.
  19. Lin C.-L., Srivastava A., Coffey D., Keefe D., Horner M., Swenson M., Erdman A. A System for optimizing medical device development using finite element analysis predictions. Journal of Medical Devices. 2014;8(2):0209411-0209413. doi: 10.1115/1.4027096
  20. Morgan A.E., Pantoja J.L., Weinsaft J., Grossi E., Guccione J.M., Ge L., Ratcliffe M. Finite element modeling of mitral valve repair. J. Biomech. Eng. 2016;138(2):021009. doi: 10.1115/1.4032125
  21. Lee L.C., Ge L., Zhang Z., Pease M., Nikolic S.D., Mishra R., Guccione J.M. Patient-specific finite element modeling of the Cardiokinetix Parachute® device: Effects on left ventricular wall stress and function. Medical & Biological Engineering & Computing. 2014;52(6):557-566. doi: 10.1007/s11517-014-1159-5
  22. Boyd A., Kuhn D., Lozowy R., Kulbisky G. Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture. J. Vas.c Surg. 2016;63(6):1613-1619. doi: 10.1016/j.jvs.2015.01.040
  23. Gharahi H., Zambrano B., Zhu D., DeMarco K., Baek S. Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging. Int. J. Adv. Eng. Sci. Appl. Math. 2016;8(1):40-60. doi: 10.1007/s12572-016-0161-6
  24. Geers A.J., Morales H.G., Larrabide I., Butakoff C., Bijlenga P., Frangi A.F. Wall shear stress at the initiation site of cerebral aneurysms. Biomech. Model Mechanobiol. 2016;16:97-115. doi: 10.1007/s10237-016-0804-3
  25. Batranin A.V., Chakhlov S.V., Kapranov B.I., Klimenov V.A., Grinev D.V. Design of the x-ray micro-CT scanner tolmi-150-10 and its perspective application in non-destructive evaluation. Applied Mechanics and Materials. 2013;379:3-10. doi: 10.4028/www.scientific.net/AMM.379.3
  26. Caro C., Pedley T., Schroter R., Seed W., Parker K. In: The Mechanics of the Circulation. Cambridge: Cambridge University Press, 2011. P. 15-32. doi: 10.1017/CBO9781139013406
  27. Alastruey J., Parker K.H., Sherwin S.J., Arterial pulse wave haemodynamics. In: 11th International Conference on Pressure Surges: Virtual PiE Led t/a BHR Group. Ed. S. Anderson. 2012. Chapter 7. P. 401-442.
  28. OpenCFD. OpenFOAM – User guide – Version 3.0. The OpenFOAM Foundation. 2015. https://openfoam.org/ (accessed 02 July 2017).
  29. Weller H.G., Tabor G., Jasak H., Fureby C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics. 1998;12(6):620-631. doi: 10.1063/1.168744
  30. Ayachit Utkarsh. The ParaView Guide: A Parallel Visualization Application. Kitware, 2015. ISBN 978-1930934306.
  31. SALOME, Open source integration platform for numerical simulation. http://www.salome-platform.org/ (accessed 02 July 2017).
  32. Lee W. General principles of carotid Doppler ultrasonography. Ultrasonography. 2014;33(1):1-17. doi: 10.14366/usg.13018
  33. Li Z., Kleinstreuer C. Analysis of biomechanical factors affecting stent-graft migration in an abdominal aortic aneurysm model. J. Biomech. 2006;39(12):2264-2273. doi: 10.1016/j.jbiomech.2005.07.010
  34. Xiong G., Figueroa C.A., Xiao N., Taylor C.A. Simulation of blood flow in deformable vessels using subject-specific geometry and spatially varying wall properties. International journal for numerical methods in biomedical engineering. 2011;27(7):1000-1016. doi: 10.1002/cnm.1404
Table of Contents Original Article
Math. Biol. Bioinf.
2017;12(2):559-569
doi: 10.17537/2017.12.559
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024