Russian version English version
Volume 13   Issue 1   Year 2018
Alexei V. Korshakov

Brain-Computer Interface Systems Based On the Near-Infrared Spectroscopy

Mathematical Biology & Bioinformatics. 2018;13(1):84-129.

doi: 10.17537/2018.13.84.

References

 

  1. Frolov A., Bobrov P., Mokienko O., Húsek D., Chernikova L., Konovalov R. Korshakov A. Sources of EEG activity most relevant to performance of brain-computer interface based on motor imagery. Neural Network World. 2012;22(1):21-37. doi: 10.14311/NNW.2012.22.002
  2. Tavada J.A., Lesho M., Tierney M.J. Keeping Watch on Glucose. IEEE. Spectrum. 2002:52-57.
  3. Fesechko V.A., Luai Kh.A. Afana, Romanov V.V., Elizarov A.A. Electronics and Communication. Thematic Issue “Electronics and Nanotechnology”. 2009;2:230-235 (in Russ.).
  4. Ishizawa H., Muro A., Takano T., Honda K., Kanai H. Non-invasive blood glucose measurement based on ATR infrared spectroscopy. SICE Annual Conference. 2008:321-324.
  5. Smith J.L. The Pursuit of Noninvasive Glucose. 5th Edition. 2017. https://www.researchgate.net/publication/317267760_The_Pursuit_of_Noninvasive_Glucose_5th_Edition (accessed 01 March 2018).
  6. Khalil O.S. Spectroscopic and clinical aspects of noninvasive glucose measurements. Clinical Chemistry. 1999;45:165-177.
  7. Medical Optical Tomography: Functional Imaging and Monitoring. Eds. G.J. Mueller, Chance B., Alfano R.R., Arridge S.R., Beuthan J., Gratton E., Kaschke M.F., Masters B.R., Svanberg S., van der Zee P. Bellingham: SPIE, 1993. Vol. IS11. 656 p.
  8. Selected Papers on Tissue Optics: Applications in Medical Diagnostics and Therapy. Ed. Tuchin V.V. Bellingham: SPIE, 1994. Vol. MS102. 700 p.
  9. Kolyva C., Ghosh A., Tachtsidis I., Highton D., Cooper C.E., Smith M., Elwell C.E. Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin. NeuroImage. 2014;85:234-244. doi: 10.1016/j.neuroimage.2013.05.070
  10. Priezzhev A.V., Tuchin V.V., Shubochkin L.P. Laser Diagnostics in Biology and Medicine. Moscow, Nauka, 1989 (in Russ.).
  11. fNIRS Analysis Environment User’s Manual. http://www.nirx.net, http://nirx.net/nirscout/ (accessed 28 February 2018).
  12. Bakker A., Smith B., Ainslie P., Smith K. In: Near-Infrared Spectroscopy, Applied Aspects of Ultrasonography in Humans. Ed. Prof. Philip Ainslie. 2012. P. 65-88. ISBN: 978-953-51-0522-0.
  13. Torricelli A., Contini D., Pifferi A., Caffini M., Re R., Zucchelli L., Spinelli L. Time domain functional NIRS imaging for human brain mapping. NeuroImage. 2014;85:28-50. doi: 10.1016/j.neuroimage.2013.05.106
  14. Takatani S., Graham M.D. Theoretical analysis of diffuse reflectance from a two-layer tissue model. IEEE Trans. Biomed. Eng. 1979;26(12):656-664. doi: 10.1109/TBME.1979.326455
  15. Schmitz C.H., Löcker M., Lasker J.M., Hielscher A.H., Barbour R.L. Instrumentation for fast functional optical tomography. Review of Scientific Instruments. 2002;73(2):429-439. doi: 10.1063/1.1427768
  16. Pei Y., Graber H.L., Barbour R.L. Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging. Applied Optics Copyright Optical Society of America. 2001;40:5755-5769. doi: 10.1364/AO.40.005755
  17. Myers D., McGraw M., George M., Mulier K., Beilman G. Tissue hemoglobin index: a non-invasive optical measure of total tissue hemoglobin. CriticalCare. 2009;13(5).
  18. Noponen T.E.J., Kotilahti K., Nissila I., Kajava T., Merilainen P.T. Effects of improper source coupling in frequency-domain near-infrared spectroscopy. Physics in Medicine and Biology. 2010;55(10):2941-2960. doi: 10.1088/0031-9155/55/10/010
  19. Punwani S., Cooper C.E., Clemence M., Penrice J., Amess P., Thorton J., Ordidge R.J. Correlation between absolute deoxyhaemoglobin [dHb] measured by near infrared spectroscopy (NIRS) and absolute R2 as determined by magnetic resonance imaging (MRI). Adv. Exp. Med. Biol. 1997;413:129-137. doi: 10.1007/978-1-4899-0056-2_14
  20. Song S., Kobayashi Y., Masakatsu G. Fujie. Monte-Carlo Simulation of Light Propagation considering Characteristic of Near-infrared LED and Evaluation on Tissue Phantom. In: Procedia CIRP: The First CIRP Conference on Biomanufacturing. 2013. V. 5. P. 25-30.
  21. Durduran T., Choe R., Baker W.B., Yodh A.G., Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys. 2010;73(076701):43. doi: 10.1088/0034-4885/73/7/076701
  22. Martelli F., Del Bianco S., Ismaelli A., Zaccanti G. Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software. Washington, USA: SPIE Press., 2009.
  23. Gorshkov A.V., Kirillin M.Yu. Monte Carlo simulation of brain sensing by optical diffuse spectroscopy. Journal of Computational Science. 2012;3(6):498-503. doi: 10.1016/j.jocs.2012.08.016
  24. Jeeva J.B., Singh M. Reconstruction of optical scanned images of inhomogeneities in biological tissues by Monte Carlo simulation. Computers in Biology and Medicine. 2015;60(1):92-99. doi: 10.1016/j.compbiomed.2015.02.014
  25. Gagnon L., Yucel M.A., Dehaes M., Cooper R.J., Perdue K.L., Selb J., Huppert T.J., Hoge R.D., Boas D.A. Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements. NeuroImage. 2012;59(4):3933-3940. doi: 10.1016/j.neuroimage.2011.10.054
  26. Korshakov A.V. NIRS signal processing by means of modified empirical mode decomposition method for the purpose of separating hemodynamic responses for BCI target mental states with specific buildup times. In: XIII International Congress «Neuroscience for Medicine and Psychology». 2017. P. 222-223 (in Russ.).
  27. Sivukhin D.V. Absorption of light and broadening of spectral lines. In: General Course of Physics. v. IV. Optics. Moscow, Nauka, 2005. P. 582-583 (in Russ.).
  28. Shifrin K.S. Scattering of Light in Turbid Media. NASA Tech., 1968.
  29. Cerebral Circulation. Ed. Klossovsky. Moscow: Medguiz, 1951 (in Russ.).
  30. Cichocki A., Amari S. Adaptive blind signal and image processing: Learning Algorithms and Applications. John Wiley & Sons, Ltd, 2002: 564. doi: 10.1002/0470845899
  31. Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N-C., Tung C.C., Liu H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Royal Society. Proc. R. Soc. Lond. A. 1998:995.
  32. Johnson C.C., Guy. A.W. Nonionizing electromagnetic wave effects in biological materials and systems. In: Proceedings of the IEEE. 1972. Vol. 60. No. 6. P. 692-718. doi: 10.1109/PROC.1972.8728
  33. Fiziologiia cheloveka. Moscow, 1996. 313 p. (Translation of: Human Pysiology. V.2. Eds. R.F. Schmidt, G. Thews. Berlin; New York: Springer-Verlag, 1983).
  34. Birbaumer N., MurguialdayA.R., Cohend L. Brain–computer interface in paralysis. Current Opinion in Neurology. 2008(21):634-638. doi: 10.1097/WCO.0b013e328315ee2d
  35. Frolov A.A., Roschin V.Yu. Brain-computer interface. Reality and future. In: All-Russian Scientific and Technical Conference "Neuroinformatics-2008": Lectures on Neuroinformatics, 2008. Part 1. P. 82-125 (in Russ.).
  36. Ang K.K., Guan C. Brain-computer interface in stroke rehabilitation. Journal of Computing Science and Engineering. 2013;7(2):139-146. doi: 10.5626/JCSE.2013.7.2.139
  37. Padmavathi R., Ranganathan V. A review on EEG based brain computer interface systems. International Journal of Emerging Technology and Advanced Engineering. 2014;4.
  38. Purkayastha S.S., Jain V.K., Sardana H.K. Topical Review: A review of various techniques used for measuring brain activity in brain computer interfaces. Advance in Electronic and Electric Engineering. 2014;4:513-522.
  39. Birbaumer N., Cohen L.G. Brain–computer interfaces: communication and restoration of movement in paralysis. J. Physiol. 2007;579:621-636. doi: 10.1113/jphysiol.2006.125633
  40. Adams R., Bahr G.C., Moreno B. Brain computer interfaces: psychology and pragmatic perspectives for the future. In: AISB 2008. Vol. 5. Proceedings of the AISB 2008 Symposium on Brain Computer Interfaces and Human Computer Interaction: A Convergence of Ideas. 2008. P. 1-6.
  41. Zepeda A., Arias C., Sengpiel F. Optical imaging of intrinsic signals:recent developments in the methodology and its applications. Neuroscience Methods. 2004(136):1-21.
  42. Xu G., Li X., Li D., Liu X. A DAQ-Device-Based continuous wave near-infrared spectroscopy system for measuring human functional brain activity. Computational and Mathematical Methods in Medicine. 2014;2014. Article ID 107320.
  43. Almajidy R.K., Le K.S., Hofmanna U.G. Novel near infrared sensors for hybrid BCI applications. In: Proc. SPIE 9536, Advanced Microscopy Techniques IV; and Neurophotonics II. 95361H. 2015. doi: 10.1364/ECBO.2015.95361H
  44. Coyle S., Ward T., Markham C. Cerebral Blood Flow Changes related to Motor Imagery, using Near-infrared Spectroscopy (NIRS). In: World Congress on Medical Physics and Biomedical Engineering. 2003.
  45. Matthews F., Soraghan C., Ward T., Markham C., Pearlmutter B. Software platform for rapid prototyping of NIRS brain computer interfacing techniques. In: Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008;2008:4840-4843. doi: 10.1109/IEMBS.2008.4650297
  46. Van Erp J.B.F., Lotte F., Tangermann M. Brain-computer interfaces: Beyond medical applications. Computer. IEEE Computer Society. 2012;45(4):26-34. doi: 10.1109/MC.2012.107
  47. Bobrov P.D., Isaev M.R., Korshakov A.V., Oganesyan V.V., Kerechanin J.V., Popodko A.I., Frolov A.A. Sources of electrophysiological and foci of hemodynamic brain activity most relevant for controlling a hybrid brain–Computer interface based on classification of EEG patterns and near-infrared spectrography signals during motor imagery. Human Physiology. 2016;42(3):241-251. doi: 10.1134/S036211971603004X
  48. Pfurtscheller G. Neuper C., Motor imagery and direct brain–computer communication. Proc. IEEE Neural Eng. 2001;89:1123. doi: 10.1109/5.939829
  49. Citi L., Poli R., Cinel C., Sepulveda F. P300-Based BCI Mouse With Genetically-Optimized Analogue Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2008;16(1). doi: 10.1109/TNSRE.2007.913184
  50. Ward L.M., Aitchison R.T., Tawse M., Simmers A.J., Shahani U. Reduced Haemodynamic Response in the Ageing Visual Cortex Measured by Absolute fNIRS. PloS ONE. 2015;10(4). Article No. e0125012.
  51. Soe N.N., Nakagawa M. Chaotic properties of hemodynamic response in functional near infrared spectroscopic measurement of brain activity. World Academy of Science. Engineering and Technology International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering. 2008;2(3):95-104.
  52. Limongi T., Di Sante G., Ferrari M., Quaresima V. Detecting Mental Calculation Related Frontal Cortex Oxygenation Changes for Brain Computer Interface Using Multi-Channel Functional Near Infrared Topography. International Journal of Bioelectromagnetism. 2009;11(2):86-90.
  53. Ang K.K., Yu J., Guan C. Extracting and selecting discriminative features from high density NIRS-based BCI for numerical cognition. In: The 2012 International Joint Conference on Neural Networks (IJCNN). 2012. P. 1-6. doi: 10.1109/IJCNN.2012.6252604
  54. Fishburn F.A., Norr M.E., Medvedev A.V., Vaidya C.J. Sensitivity off NIRS to cognitive state and load. Frontiers in Human. Neuroscience. 2014;8. Article(. 76).
  55. Villringer A., Planck J., Hock C., Schlenkofer L., Dirnagl U. Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neuroscience Letters. 1993(154):101-104. doi: 10.1016/0304-3940(93)90181-J
  56. Matsuda G., Hiraki K. Sustained decrease in oxygenated hemoglobin during video games in the dorsal prefrontal cortex: A NIRS study of children. NeuroImage. 2006(29):706-711. doi: 10.1016/j.neuroimage.2005.08.019
  57. Guirgis M., Falk T., Power S., Blain S., Chau T. Harnessing physiological responses to improve NIRS-based brain-computer interface performance. In: Proc. ISSNIP Biosignals Biorobotics Conf. 2010. P. 59-62.
  58. Herff C., Heger D., Putze F., Guan C., Schultz T. Self-paced BCI with NIRS based on speech activity. International BCI Meeting. 2013.
  59. Li W.S., Li Y.T. FOMs of Consciousness Measurement. Proceedings of the 2015 International Conference on Artificial Intelligence and Industrial Engineering. 2015. doi: 10.2991/aiie-15.2015.34
  60. Hori S., Mori M., Takehisa M., Akitoshi S. Development and inspection of NIRS-Based real-time feedback BCI system: Fusion of Neuroscience and Media-Art.Transactions of Japanese Society for Medical and Biological Engineering. 2013;51(Suppl. Article No. R-90).
  61. Kaiser V., Bauernfeinda G., Kaufmannb T., Kreilingera A., Kublerb A., Neupera C. Cortical Effects of User Learning in a Motor-Imagery BCI Training. International Journal of Bioelectromagnetism. 2011;13(2):60-61.
  62. Hwang H.-J., Lim J.-H., Kim D.-W., Ima C.-H. Evaluation of various mental task combinations for near-infrared spectroscopy-based brain-computer interfaces. Journal of Biomedical Optics. 2014;19(7). doi: 10.1117/1.JBO.19.7.077005
  63. Gupta C.N., Palaniappan R. Using EEG and NIRS for brain-computer Interface and Cognitive Performance Measures: A Pilot Study. International Journal of Cognitive Performance Support. 2013;1(1):69. doi: 10.1504/IJCPS.2013.053576
  64. Naseer N., Honga K-S. Classification of functional near-infrared spectroscopy signalscorresponding to the right- and left-wrist motor imagery fordevelopment of a brain–computer interface. Neuroscience Letters. 2013;553:84-89. doi: 10.1016/j.neulet.2013.08.021
  65. Mak J.N., Wolpaw J.R. Clinical Applications of Brain-Computer Interfaces: Current State and Future Prospects. IEEE Rev. Biomed. Eng. 2009;2:187-199. doi: 10.1109/RBME.2009.2035356
  66. Belda-Lois J.-M., Mena-del Horno S., Bermejo-Bosch I., Moreno J.C., Pons J.L., Farina D., Losa M., Molinari M., Tamburella F., Ramos A., Caria A., Solis-Escalante T., Brunner C., Rea M. Rehabilitation of gait after stroke: a review towards a top-down approach. Journal of NeuroEngineering and Rehabilitation. 2011;8:66. doi: 10.1186/1743-0003-8-66
  67. Buch E., Weber C., Cohen L.G., Braun C., Dimyan M.A., Ard T., Mellinger J., Caria A., Soekadar S., Fourkas A. et al. Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke. 2008;39:910-917. doi: 10.1161/STROKEAHA.107.505313
  68. Soraghan C., Matthews F., Markham C., Pearlmutter B.A., O’Neill R., Ward T.E. A 12-Channel, real-time near-infrared spectroscopy instrument for brain-computer interface applications. In: Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008. P. 5648-5651. doi: 10.1109/IEMBS.2008.4650495
  69. Birbaumer N., Piccione F., Silvoni S., Wildgruber M. Ideomotor silence: the case of complete paralysis and brain–computer interfaces (BCI). Psychological Research. 2012;76:183-191. doi: 10.1007/s00426-012-0412-5
  70. Bi L.-H., Fan X.-A., Liu Y.-I. EEG-Based-Controlled Mobile Robots. A Survey IEEE Transactions on human-machine systems. 2003;43(2).
  71. Ward T.E., Soraghan C.J., Matthews F., Markham C. A Concept for Extending the Applicability of Constraint-Induced Movement Therapy through Motor Cortex Activity Feedback Using a Neural Prosthesis. Computational Intelligence and Neuroscience. 2007. Article No. 51363.
  72. Volpe B.T., Ferraro M., Lynch D., Christos P., Krol J., Trudel Ch., Krebs H.I., Hogan N. Robotics and other devices in the treatment of patients recovering from stroke. Current Neurology and Neuroscience Reports. 2005;5(6):465-470. doi: 10.1007/s11910-005-0035-y
  73. Johnson M.J. Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke. Journal of NeuroEngineering and Rehabilitation. 2006;3:29. doi: 10.1186/1743-0003-3-29
  74. Dipietro L., Ferraro M., Palazzolo J.J., Krebs H.I., VolpeB.T., Hogan N. Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005;13(3):325-334. doi: 10.1109/TNSRE.2005.850423
  75. Portelli A., Daly I., Spencer M., Nasuto S. Low Cost Brain Computer Interface First Results. In: Proceedings of the 5th International Brain-Computer Interface Conference (September 22-24, 2011, Graz University of Technology, Austria). 2011. P. 320-323. https://www.tugraz.at/.../Proceedings_BCI_Conference_2011_neu.pdf (accessed 10 March 2018).
  76. Volpe B.T., Krebs H.I., Hogan N., Edelsteinn L., Diels C.M., Aisen M.L. Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology. 1999;53(8):1874-1876. doi: 10.1212/WNL.53.8.1874
  77. Ferraro M., Palazzolo J.J., Krol J., Krebs H.I., Hogan N., Volpe B.T. Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology. 2003;61(11):1604-1607. doi: 10.1212/01.WNL.0000095963.00970.68
  78. Colombo R., Pisano F., Micera S., Mazzone A., Delconte C., Carrozza M.Ch., Dario P., Minuco G. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005;13(3):311-324. doi: 10.1109/TNSRE.2005.848352
  79. Tai K., Chau T. Single-trial classification of NIRS signals during emotional induction tasks: towards a corporeal machine interface. Journal of NeuroEngineering and Rehabilitation. 2009;6:39. doi: 10.1186/1743-0003-6-39
  80. Akilandeswari K., Nasira G.M. Swarm Optimized Feature Selection of EEG Signals for Brain-Computer Interface. International Journal of Computational Intelligence and Informatics. 2014;4(1).
  81. Sitaram R., Zhang H., Guan C., Manoj Thulasidas M., Hoshi Y., Ishikawa A., Shimizu K., Birbaumer N. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface. NeuroImage. 2007;34:1416-1427. doi: 10.1016/j.neuroimage.2006.11.005
  82. Tomita Y., Vialatte F.-B., Dreyfus G., Mitsukura Y., Bakardjian H., Cichocki A. Bimodal BCI using simultaneously NIRS and EEG. IEEE Trans. Biomed. Eng. 2014;61(4):1274-1284. doi: 10.1109/TBME.2014.2300492
  83. Bauernfeind G., Leeb R., Wriessnegger S.C., Pfurtscheller G. Development, set-up and first results for a one-channel near-infrared spectroscopy system. Biomed. Tech. (Berl.). 2008;53(1):36-43. doi: 10.1515/BMT.2008.005
  84. Wolf M., Wolf U., Toronov V., Michalos A., Paunescu L.A., Choi J.H., Gratton E. Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in visual and motor cortices during functional stimulation: a near-infrared spectroscopy study. NeuroImage. 2002(16):704-712. doi: 10.1006/nimg.2002.1128
  85. Coyle S.M., Ward T.E., Markham C.M. Brain–computer nterface using a simplified functional near-infrared spectroscopy system. J. Neural. Eng. 2007;4:219-226. doi: 10.1088/1741-2560/4/3/007
  86. Power S.D., Falk T.H., Chau T. Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy. Neural. Eng. 2008;7.
  87. Ogata H., Mukai T., Yagi T. A study on the frontal cortex in cognitive tasks using near-infrared spectroscopy. Proc. IEEE EMBS. 2007:4731-4734. doi: 10.1109/IEMBS.2007.4353396
  88. Falk T.H., Guirgis M., Sarah Power S., Chau T. Taking NIRS-BCIs outside the lab: towards achieving robustness against environment noise. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2011;19(2). doi: 10.1109/TNSRE.2010.2078516
  89. Power S.D., Kushki A., Chau T. Intersession consistency of single-trial classification of the prefrontal response to mental arithmetic and the no-control state by NIRS. PLoS ONE. 2012;7(7). doi: 10.1371/journal.pone.0037791
  90. Tam N.D., Zouridakis G. Optical imaging of motor cortical hemodynamic response to directional arm movements using near-infrared spectroscopy. International Journal of Biological Engineering. 2013;3(2):11-17.
  91. Hong K.-S., Naseer N., Kimc Y.-H. Classification of prefrontal and motor cortex signals for three-class. fNIRS–BCI. Neuroscience Letters. 2015;587:87-92. doi: 10.1016/j.neulet.2014.12.029
  92. Yanagisawa K., Sawai H., Tsunashima H. Development of NIRS-BCI system using Perceptron. In: 12th International Conference on Control, Automation and Systems (ICCAS 2012) (17-21 Oct. Korea). 2012. P. 17-21.
  93. Coyle S.M., Ward T.E., Markham C.M., McDarby G. On the suitability of near-infrared (NIR) systems for next generation brain-computer interfaces. Physiol. Meas. 2004;25:815-822. doi: 10.1088/0967-3334/25/4/003
  94. Strait M., Scheutz M. Building a literal bridge between robotics and neuroscience using functional near infrared spectroscopy. In: HRI '14: Proceedings of the 2014 ACM/IEEE international conference on Human-robot interaction.(Bielefeld, Germany, March 03-06, 2014). doi: 10.1145/2559636.2559670
  95. Ang K.K., Chua K.S.G., Phua K.S., Wang C., Chin, Z.Y., Kuah C. W.K., Guan C. A Randomized controlled trial of EEG-based motor imagery Brain-Computer Interface robotic rehabilitation for stroke. Clinical EEG and Neuroscience. 2015;46(4):310-320. doi: 10. doi: 10.1177/1550059414522229
  96. Brauchle D., Vukelic M., Bauer R., Ghabaraghi A. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation. Frontiers in Human Neuroscience. 2015;9:564. doi: 10.3389/fnhum.2015.00564
  97. Lee J.-H., Ryu J., Jolesz F.A., Cho Z.-H., Yoo S.-S. Brain-machine interface via real-time fMRI: preliminary study on thoughtcontrolled robotic arm. Neurosci. Lett. 2009;450(1):1-6. doi: 10.1016/j.neulet.2008.11.024
  98. McFarland D.J., Wolpaw J.R. Brain-computer interface operation of robotic and prosthetic devices. Computer. 2010;41:52-56. doi: 10.1109/MC.2008.409
  99. Muller-Putz G.R., Scherer R., Pfurtscheller G., Rupp R. EEG-based neuroprosthesis control: a step towards clinical practice. Neurosci. Lett. 2005;382(1-2):169-174. doi: 10.1016/j.neulet.2005.03.021
  100. Galan F., Nuttin M., Lew E., Ferrez P.W., Vanacker G., Philips J., Milla´n J. del R. A brain-actuated wheelchair: asynchronous and non-invasive Brain-computer interfaces for continuous control of robots. Clin. Neurophysiol. 2008;9(119):2159-2169. doi: 10.1016/j.clinph.2008.06.001
  101. Tanaka K., Matsunaga K., Wang H.O. Electroencephalogram-based control of an electric wheelchair. IEEE Trans. Robotics. 2005;21:762-766. doi: 10.1109/TRO.2004.842350
  102. Aminaka D., Makino S., Rutkowski T.M. SSVEP Brain-computer Interface using Green and Blue Lights. In: 10th AEARU Workshop on Computer Science and Web Technology: The Association of East Asian Research Universities (AEARU). Tsukuba, Japan: University of Tsukuba, 2015.
  103. Aminaka D., Makino S., Rutkowski T.M. Chromatic SSVEP BCI paradigm targeting the higher frequency EEG Responses. Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific. 2014. P. 1-7. doi: 10.1109/APSIPA.2014.7041761
  104. Kim D-J., Wang Z., Paperno N., Behal A. System design and implementation of UCF-MANUS–An intelligent assistive robotic manipulator. IEEE/ASME Transactions on Mechatronics. 2014;19(1):225-237. doi: 10.1109/TMECH.2012.2226597
  105. Tsui K.M., Feil-Seifer D.J., Matarić M.J., Yanco H.A. Performance Evaluation Methods for Assistive Robotic Technology. In: Performance Evaluation and Benchmarking of Intelligent Systems. Eds. Madhavan R., Tunstel E., Messina E. Springer, 2009. P. 41-66. doi: 10.1007/978-1-4419-0492-8_3
  106. Choi K., Cichocki A. Control of a wheelchair by motor imagery in real Time. Intelligent Data Engineering and Automated Learning – IDEAL 2008. 2008;5326:330-337. doi: 10.1007/978-3-540-88906-9_42
  107. Kotov S.V., Turbina L.G., Bobrov P.D., Frolov A.A., Pavlova O.G., Kurganskaia M.E., Biriukova E.V. Rehabilitation of post stroke patients using a bioengineering system “brain-computer interface + exoskeleton”. Zh Nevrol Psikhiatr Im S S Korsakova (Journal of Neurology and Psychiatry named S.S. Korsakov). 2014;12:66-72 (in Russ.).
  108. Liukmanov R.Kh., Mokienko O.A., Chernikova L.A., Cherviakov A.V., Suponeva N.A., Piradov M.A. In: Izbrannye voprosy neiroreabilitatsii (Selected issues of Neuro-Rehabilitation): Proceedings of the VII International Congress “Neuro-Rehabilitation – 2015”. Moscow, 2015 (in Russ.).
  109. Babushkina N.A., Biriukova E.V., Bobrov P.D., Kerechanin Ia.V., Kurganskaia M.E., Frolov A.A. In: Izbrannye voprosy neiroreabilitatsii (Selected issues of Neuro-Rehabilitation): Proceedings of the VII International Congress “Neuro-Rehabilitation – 2015”. Moscow, 2015 (in Russ.).
  110. Kotov C.B., Turbina L.G., Bobrov P.D., Frolov A.A., Pavlova O.G., Kurganskaia M.E., Biriukova E.V. In: Izbrannye voprosy neiroreabilitatsii (Selected issues of Neuro-Rehabilitation): Proceedings of the VII International Congress “Neuro-Rehabilitation – 2015”. Moscow, 2015 (in Russ.).
  111. Frolov A.A., Biriukova E.V., Bobrov P.D., Platonov A.K., Prianichnikov V.E. Informatsionno-izmeritel'nye i upravliaiushchie sistemy (Information-measuring and Control Systems). 2013;11(1):12-19 (in Russ.).
  112. Tumanov K., Goebel R., Mockel R., Sorger B., Weiss G. fNIRS-based BCI for robot Control. In: Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2015). Turkey, 2015;4(8).
  113. Lakshmi R., Prasad T.V., Chandra Prakash V. Survey on EEG signal processing methods. International Journal of Advanced Research in Computer Science and Software Engineering. 2014;4(1).
  114. MellingerJ., SchalkG., BraunC., PreisslH., RosenstielW., N. Birbaumer, KublerA. AnMEG-basedbrain–computerinterface (BCI). NeuroImage. 2007;36(3):581-593. doi: 10.1016/j.neuroimage.2007.03.019
  115. Lopes da Silva F. EEG and MEG: Relevance to Neuroscience. Neuron. 2013;80:1112-1128. doi: 10.1016/j.neuron.2013.10.017
  116. Pankratova N.M., Ustinin M.N., Llinás R.R. The method to reveal pathologic activity of human brain in the magnetic encephalography data. Mathematical Biology and Bioinformatics. 2013;8(2):679-690 (in Russ.). doi: 10.17537/2013.8.679
  117. Korshakov A.V., Polikarpov M.A., Ustinin M.N., Sychev V.V., Rykunov S.D., Naurzakov S.P., Grenbenkin A.P., Panchenko V.Ya Registration and analysis of precise frequency EEG/MEG responses of human brain auditory cortex to monaural sound stimulation with fixed frequency components. Mathematical Biology and Bioinformatics. 2014;9(1):296-308 (in Russ.). doi: 10.17537/2014.9.296
  118. Ustinin M.N., Polikarpov M.A., Pankratov A.N., Rykunov S.D., Naurzakov S.P., Grebenkin A.P., Panchenko V.Ya. Comparative analysis of magnetic encephalography data sets. Mathematical Biology and Bioinformatics. 2011;6(1):63-70 (in Russ.). doi: 10.17537/2011.6.63
  119. Jas M., Engemann D.A., Bekhti Y., Raimondo F., Gramfort A. Autoreject: Automated artifact rejection for MEG and EEG data. NeuroImage. 2017;159:417-429. doi: 10.1016/j.neuroimage.2017.06.030
  120. Schaeffer M.-C., Labyt E., Rohu V., Tarrin N., Vergara I., Cokgungor S., Eliseyev A., Charvet G., Benabid C.M. A.-L., Aksenova T. Hand movement decoding from magnetoencephalographic signals for BCI applications. Neurophysiologie Clinique/Clinical Neurophysiology. 2016;46(2):104. doi: 10.1016/j.neucli.2016.05.026
  121. Ustinin M.N., Sychev V.V., Walton K.D., Llinas R.R. New Methodology for the Analysis and Representation of Human Brain Function: MEGMRIAn. Mathematical Biology and Bioinformatics. 2014;9(2):464-481. doi: 10.17537/2014.9.464
  122. Rykunov S.D., Ustinin M.N., Polyanin A.G., Sychev V.V., Llinás R.R. Software for the partial spectroscopy of human brain. Mathematical Biology and Bioinformatics. 2016;11(1):127-140 (in Russ.). doi: 10.17537/2016.11.127
  123. Daliri M.R. A hybrid method for the decoding of spatial attention using the MEG brain signals. Biomedical Signal Processing and Control. 2014;10:308-312. doi: 10.1016/j.bspc.2012.12.005
  124. Zarshenas H., Bamdad M., Grailu H., Shakoori A.A. Classifier Combination Approach in Motion Imagery Signals Processing for Brain Computer Interface. World Academy of Science, Engineering and Technology. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering. 2013;7(6).
  125. Yager R.R. On ordered weighted averaging aggregation operators in multi criteria decision making. Man and Cybernetics. 1988;18:183-190. doi: 10.1109/21.87068
  126. Khan M.J., Hong K.-S., Naseer N., Bhutta M.R., Yoon S.-H. Hybrid EEG-NIRS BCI for rehabilitation using different-source brain signals. In: Proc. of the SICE Annual Conference (September 9-12, 2014, Hokkaido University, Sapporo, Japan). 2014.
  127. Khan M.J., Hong M.J., Hong K.-S. Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface. Frontiers in Human Neuroscience.Methods. 2014;8. Article No. 244.
  128. Khan M.J., Hong K.-S., Naseer N., Bhutta M.R. Multi-decision detection using EEG-NIRS based hybrid Brain-Computer Interface (BCI). In: 20th Annual Meeting of the Organization for Human Brain Mapping (OHMB). 2014.
  129. Fazli S., Mehnert J., Steinbrink J., Curio G., Villringer A., Muller K.-R., Blankertz B. Enhanced performance by a hybrid NIRS–EEG brain computer interface. NeuroImage. 2012;59:519-529. doi: 10.1016/j.neuroimage.2011.07.084
  130. Koo B., Lee H.G., Nam Y., Kang H., Koh C.S., Shin H.C., Choi S. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery. Neuroscience Methods. 2015;244:26-32. doi: 10.1016/j.jneumeth.2014.04.016
  131. Leeb R., Sagha H., Chavarriaga R., Del R., Millan J. Multimodal fusion of muscle and brain signals for a hybrid-BCI. In: Conf. Proc. IEEE Eng. Med. Biol. 2010. P. 4343-4346. doi: 10.1109/IEMBS.2010.5626233
  132. Pfurtscheller G., Allison B.Z., Brunner C., Bauernfeind G., Solis-Escalante T., Scherer R., Zander T.O., Mueller-Putz G., Neuper C., Birbaumek N. The hybrid BCI. Frontiers in Neuroscience. 2010;4. Article No. 30.
  133. Fazli S., Dahne S., Samek W., Biemann F., Muller K.-R. Learning from more than one data source: data fusion techniques for sensorimotor rhythm-based Brain-Computer Interfaces. In: Proceedings of the IEEE. 2015;103(6). doi: 10.1109/JPROC.2015.2413993
  134. Soraghan C.J., Matthews F., Kelly D., Markham C., Pearlmutter B. A., O'Neill R. A Dual-channel optical Brain-Computer Interface in a gaming environment. In: Proceedings of 9th International Conference on Computer Games: AI, Animation, Mobile, Educational and Serious Games (CGAMES). Ireland: Dublin Institute of Technology, 2006.
  135. Strait M., Canning C., Scheutz M. Limitations of NIRS-Based BCI for realistic applications in human-computer interaction. In: Proceedings of the Fifth International Brain-Computer Interface Meeting. 2013. Article ID 002.
  136. Strangman G., Culver J.P.,Thompson J.H., Boas D.A. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. NeuroImage. 2002;17:719-731. doi: 10.1006/nimg.2002.1227
  137. Obrig H., Neufang M., Wenzel R., Kohl M., Steinbrink J., Einhaupl K., Villringer A. Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. NeuroImage. 2000;12:623-639. doi: 10.1006/nimg.2000.0657
  138. Scarpa F., Cutini S., Scatturin P., Dell’Acqua R., Sparacino G. Bayesian filtering of human brain hemodynamic activity elicited by visual short-term maintenance recorded through functional near-infrared spectroscopy (fNIRS). Optics Express. 2010;18(25):26550-26568. doi: 10.1364/OE.18.026550
  139. Duong T.Q., Kim D.S., Ugurbil K., Kim S.G. Spatiotemporal dynamics of the BOLD fMRI signals: Toward mapping submillimeter cortical columns using the early negative response. Magn. Reson. Med. 2000;44:231-242. doi: 10.1002/1522-2594(200008)44:2<231::AID-MRM10>3.0.CO;2-T
  140. Menon R.S., Ogawa S., Hu X., Strupp J.S., Andersen P., Ugurbil K. BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: Echo-planar imaging mirrors previous optical imaging using intrinsic signals. Magn. Reson. Med. 1995;33:453-459. doi: 10.1002/mrm.1910330323
  141. Malonek D., Grinvald A. Vascular regulation at sub millimeter range. Sources of intrinsic signals for high resolution optical imaging. Adv. Exp. Med. Biol. 1996;413:215-220. doi: 10.1007/978-1-4899-0056-2_24
  142. Vanzetta I., Grinvald A. Increased cortical oxidative metabolism due to sensory stimulation: Implications for functional brain imaging. Science. 1999;286:1555-1558. doi: 10.1126/science.286.5444.1555
  143. Cannestra A.F., Pouratian N., Bookheimer S.Y., Martin N.A., Beckerand D.P., Toga A.W. Temporal spatial differences observed by functional MRI and human intraoperative optical imaging. Cereb. Cortex. 2001;11:773-782. doi: 10.1093/cercor/11.8.773
  144. Firbank M., Okada E., Delpy D.T. A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses. NeuroImage. 1998;8:69-78. doi: 10.1006/nimg.1998.0348
  145. Punwani S., Ordidge R.J., Cooper C.E., Amess P., Clemence M. MRI measurements of cerebral deoxyhaemoglobin concentration [dHb]–Correlation with near infrared spectroscopy (NIRS). NMR Biomed. 1998;11:281-289. doi: 10.1002/(SICI)1099-1492(199810)11:6<281::AID-NBM529>3.0.CO;2-6
  146. Sitaram R., Caria A., Birbaumer N., Hemodynamic brain–computer interfaces for communication and rehabilitation. Neural Networks. 2009. doi: 10.1016/j.neunet.2009.05.009
  147. Ye J.C., Tak S., Jang K.E., Jung J., Jang J. NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. NeuroImage. 2009;44(2. 15):428-447.
  148. Hoge R., Franceschini M., Covolan R., Huppert T., Mandeville J., Boas D.A. Simultaneous recording of task-induced changes in blood oxygenation, volume, and flow using diffuse optical imaging and arterial spin-labeling MRI. NeuroImage. 2005;25(3):701-707. doi: 10.1016/j.neuroimage.2004.12.032
  149. Logothetis N. The underpinnings of the BOLD functional magnetic resonance imaging signal. Neurosci. 2003;23(10):3963-3971. doi: 10.1523/JNEUROSCI.23-10-03963.2003
  150. Benaron D., Hintz S., Villringer A., Boas D.A., Kleinschmidt A., Frahm J., Hirth C., Obrig H., van Houten J., Kermit E., et al. Noninvasive functional imaging of human brain using light. J. Cereb. Blood Flow Metab. 2000;20:469-477. doi: 10.1097/00004647-200003000-00005
  151. Boas D.A., O'Leary M.A., Chance B., Yodh A.G. Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis. Appl. Opt. 1997;36:75-92. doi: 10.1364/AO.36.000075
  152. Boas D., Brooks D., Miller E., DiMarzio C., Kilmer M., Gaudette R. Imaging the body with diffuse optical tomography. IEEE Signal Process. Mag. 2001;18(6):57-75. doi: 10.1109/79.962278
  153. Boas D., Strangman G., Culver J., Hoge R., Jasdzewski G., Poldrack R., Rosen B., Mandeville J. Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy? Phys. Med. Biol. 2003;48(15):2405-2418. doi: 10.1088/0031-9155/48/15/311
  154. Boas D., Dale A., Franceschini M. Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. NeuroImage. 2004;23:275-288. doi: 10.1016/j.neuroimage.2004.07.011
  155. Hoge R., Diamond S., Franceschini M., Boas D. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. NeuroImage. 2006;29(2):368-382. doi: 10.1016/j.neuroimage.2005.08.065
  156. Boas D., Chance B., Yodh A. Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography. Opt. Lett. 1995;20(5):426-428. doi: 10.1364/OL.20.000426
  157. Siegel A., Culver J., Mandeville J., Boas D. Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation. Phys. Med. Biol. 2003;48(10):1391-1403. doi: 10.1088/0031-9155/48/10/311
  158. Theodore J.H., Diamond S.G., Franceschini M.A., Boas D.A. Homer: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics. 2009;48(10):D280-D298.
  159. HOMER2 Download Page. http://optics.martinos.org/research/software/ (accessed 28 February 2018).
  160. Haihong Z., Cuntai G. A Kernel-based signal localization method for NIRS Brain-computer Interfaces. In: 18th International Conference on Pattern Recognition (ICPR'06). 2006;1:1158-1161.
  161. Sun J. Tail probabilities of the maxima of Gaussian random fields. Ann. Probab. 1993;21(1):34-71.
  162. Sun J., Loader C. Simultaneous confidence bands for linear regression and smoothing. Ann. Stat. 1994;22(3):1328-1345.
  163. Cui X., Bray S., Reiss A.L. Speeded Near Infrared Spectroscopy (NIRS) response detection. PloS ONE. 2010;5(11).
  164. Franceschini M.A., Fantini S., Toronov V., Filiaci M.E., Gratton E. Cerebral hemodynamics measured by Near-Infrared Spectroscopy at rest and during motor activation. In: Proceedings of the Optical Society of America In Vivo Optical Imaging Workshop. 2000. P. 73-80.
  165. Cui X., Bray S., Bryant D.M., Glover G.H., Reiss A.L. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage. 2011;54(4):2808-2821.
  166. Medvedev A.V., Borisov S.V., Gandjbakhche A.H., VanMeter J. "Seeing" electroencephalogram through the skull: imaging prefrontal cortex with fast optical signal. Biomedical Optics. 2010;15(6).
  167. Huang J., Wang S., I Jia S., Mo D., Chen H.-C. Cortical dynamics of semantic processing during sentence comprehension: evidence from event-related optical signals. Plos ONE. 2013;8(8).
  168. Medvedev A.V., Kainerstorfer J. M., Borisov S.V., VanMetera J. Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition. Journal of Biomedical Optics. 2011;16(1).
  169. Chiarelli A. M., Romani G. L., Merla A. Fast optical signals in the sensorimotor cortex: General Linear Convolution Model applied to multiple source–detector distance-based data. NeuroImage. 2014;85:245-254.
  170. Tam N.D., Zouridakis G. Temporal decoupling of oxy- and deoxy-hemoglobin hemodynamic responses detected by functional near-infrared spectroscopy (fNIRS). Journal of Biomedical Engineering and Medical Imaging. 2014;1(2):18-28.
  171. Zhang F., Aravanis A.M., Adamantidis A., de Lecea L., Deisseroth K. Circuit-breakers: optical technologies for probing neural signals and systems. Nature Reviews Neuroscience. 2007;8:577-581.
  172. Kim P., Puoris’haag M., Cote D., Lin C.P., Yun S.H. In vivo confocal and multiphoton microendoscopy. J. of Biomedical Optics. 2008;13(1).
  173. Kobat D., Durst M.E., Nishimura N., Wong A.W., Schaffer C.B., Xu C. Deep tissue multiphoton microscopy using longer wavelength excitation. Optics Express. 2009;17(16):11.
  174. Mohanty S.K., Reinscheid R.K., Liu X., Okamura N., Krasieva T.B., Berns M.W. In-Depth Activation of Channelrhodopsin-2 Sensitized Excitable Cells with High Spatial Resolution Using Two-Photon Excitation with a Near-Infrared Laser Microbeam. Biophysical Journal. 2008;95:11.
  175. Ebbesen C.L., Bruus H. Analysis of laser-induced heating in optical neuronal guidance. Journal of Neuroscience Methods. 2012;209:168-177.
  176. Ehrlicher A., Betz T., Stuhrmann B., Koch D., Milner V., Raizen M.G., Kas J. Guiding neuronal growth with light. PNAS. 2002.
  177. Ilina I.V., Ovchinnikov A.V., Sitnikov D.S., Chefonov O.V., Agranat M.B., Khramova Yu.V., Semenova M.L. Microsurgery of cell membrane with femtosecond laser pulses for cell fusion and optical injection. Advanced Laser Technologies. 2012.
  178. Birbaumer N., Gallegos-Ayala G., Wildgruber M., Silvoni S., Soekadar S.R. Direct brain control and communication in paralysis. Brain Topography. 2014;27(1):4-11.
Table of Contents Original Article
Math. Biol. Bioinf.
2018;13(1):84-129
doi: 10.17537/2018.13.84
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024