Dorovskih I.V.1, Senko O.V.2, Chuchupal V.Ya.2, Dokukin A.A.2, Kuznetsova A.V.3
On Possibility of Machine Learning Application for Diagnosing Dementia by Eeg Signals
Mathematical Biology & Bioinformatics. 2019;14(2):543-553.
doi: 10.17537/2019.14.543.
References
- Gavrilova S.I. Mental disorders in the population of the elderly and senile age (clinical-statistical and clinical-epidemiological study): Doctoral dissertation (Medical Sciences). Moscow; 1984 (in Russ.).
- Gavrilova S.I., Kalyn Ya.B. Vestnik Rossiiskoi akademii meditsinskikh nauk (Annals of the Russian academy of medical sciences). 2002;9:15-20 (in Russ.).
- Gavrilova S.I. Farmakoterapiia bolezni Al'tsgeimera (Pharmacotherapy of Alzheimer's disease). Moscow; 2007. 306 p. (in Russ.).
- Bozhko O.V., Mikhailova N.M., Savvateeva N.Yu. Pisikhiatriia (Psychiatry). 2010;46(4):12-20 (in Russ.).
- Kokmen E., Chandra V., Schoenberg B.S. Trends in incidence of dementing illness in Rochester, Minnesota, in three quinquennial periods, 1960-1974. Neurology. 1988;38:975-980. doi: 10.1212/WNL.38.6.975
- Lowin A., Knapp M., McCrone P. Alzheimer's disease in the UK: comparative evidence on cost of illness and volume of health services research funding. Int. J. Geriatr. Psychiatry. 2001;16:1143-1148.
- Leon J., Neumann P. J. The cost of Alzgeimer's disease in managed care: a cross-sectional study. Am. J. Manag. Ñare. 1999;5:867-877.
- Houmani N., Vialette F., Gallego-Jutgla E., Dreyfus G., Nguen-Michel V.H., Mariani J., Kinugawa K. Diagnosis of Alzheimer's disease with Electroencephalography in differential framework. PLoS ONE. 2018;13(3). Article No. e0193607. doi: 10.1371/journal.pone.0193607
- Fiscon G., Weitschek E., Cialini A., Felici G., Bertolazzi P., De Salvo S., Bramanti P., De Cola M.C. Combining EEG signal processing with supervised methods for Alzheimer's patients classification. BMC Med. Inform. Decis. Mak. 2018;18(1):35.
- Simpraga S., Alvarez-Jimenez R., Mansvelder H.D., van Gerven J.M.A., Groenveld G.J., Poil S.S., LinkenKaer-Hansen K. EEG Machine learning for accurate detection of cholinergic intervention and Alzheimer's disease. SciRep. 2017;7(1):5775. doi: 10.1038/s41598-017-06165-4
- Cramer J.S. The early origins of the logit model. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences. 2004;35(4):613-626. doi: 10.1016/j.shpsc.2004.09.003
- Rosenblatt F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Cornell Aeronautical Laboratory, Psychological Review. 1958;65(6):386-408. doi: 10.1037/h0042519
- Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995;20(3):273-297.
- Breiman L. Random Forests. Machine Learning. 2001;45(1):5-32. doi: 10.1023/A:1010933404324
- Freund Y., Schapire R. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences. 1997;55:119-139. doi: 10.1006/jcss.1997.1504
- Friedman J. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics. 2001;29(5):1189-1232. doi: 10.1214/aos/1013203451
- Ryazanov V.V. Logical regularities in pattern recognition (Parametric Approach). Computational Mathematics and Mathematical Physics 2007;47(10):1720-1735. doi: 10.1134/S0965542507100120
- Kuznetsov V.A., Senko O.V., Kuznetsova A.V., Semenova L.P., Aleschenko A.V., Gladysheva T.B., Ivshina A.V. Khimicheskaia fizika (Russian Journal of Physical Chemistry B.). 1996;15(1):81-100 (in Russ.).
- Spackman K. Signal detection theory: Valuable tools for evaluating inductive learning. In: Proceedings of the Sixth International Workshop on Machine Learning. San Mateo, CA: Morgan Kaufmann, 1989. P. 160-163.
- Mann H., Whitney D. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Annals of Mathematical Statistics. 1947;18(1):50-60. doi: 10.1214/aoms/1177730491
|
|
|