Russian version English version
Volume 15   Issue 2   Year 2020
Lelekov A.S., Trenkenshu R.P.

Modeling Of Chlorophyll a Content in Microalgae Cultures

Mathematical Biology & Bioinformatics. 2020;15(2):158-171.

doi: 10.17537/2020.15.158.

References

  1. Finenko Z.Z., Hoepffner N., Williams R., Piontkovski S.A. Phytoplankton carbon to chlorophyll a rario: response to light, temperature and nutrient limitation. Marine Ekological Journal. 2003;2(2):40–64 (in Russ.).
  2. Churilova T., Kryvenko O., Suslin V., Efimova T., Moiseeva N. Primary Production of the Black Sea: Spectral Approach. Marine Biological Journal. 2016;1(3):50–53 (in Russ.). doi: 10.21072/mbj.2016.01.3.08
  3. Kovalyova I.V., Finenko Z.Z. Quantitative regularities of changes in the relative content of chlorophyll at the joint action of light and temperature in diatoms. Voprosy sovremennoi algologii (Issues of modern algology). 2019;3(21):28–36 (in Russ.). doi: 10.33624/2311-0147-2019-3(21)-28-36
  4. Nielsen S., Jorgensen Ε. The adaptation of plankton algae. 1. General part. Physiol. Plantar. 1968;21:401–413. doi: 10.1111/j.1399-3054.1968.tb07264.x
  5. Richardson K., Beardall J., Raven J. Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol. 1983;93:157–191. doi: 10.1111/j.1469-8137.1983.tb03422.x
  6. Macintyre H.L., Kana T.M., Anning T., Geider R.J. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J. Phycol. 2002;38:17–38. doi: 10.1046/j.1529-8817.2002.00094.x
  7. Hall D.O., Rao K. K. Photosynthesis. Edward Arnold, 1977. 71 p.
  8. Mokronosov A.T., Gavrilenko V.F., Zhigalova T.V. Fotosintez. Fiziologo-ekologicheskie i biokhimicheskie aspekty (Photosynthesis. Physiological, ecological and biochemical aspects). Moscow, 2006. 448 p. (in Russ.).
  9. Minyuk G.S., Drobetskaya I.V., Trenktnshu R.P., Vyalova O.Y. Growth and Biochemical Characteristics of Spirulina Platensis (Nordst.) Geitler under different conditions of nitrogen nutrition. Ekologiya Moray. 2002;62:61–66 (in Russ.).
  10. Borovkov A.B. Gudvilovich I.N. growth and biochemical indices of Dunaliella salina under conditions of batch culture. Hydrobiol. Journ. 2013;49(2):75–84.
  11. Geider R.J. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol. 1987;106(1):1–34. doi: 10.1111/j.1469-8137.1987.tb04788.x
  12. Cloern J.E., Grenz C., Vidergar-Lucas L. An empirical model of the phytoplankton chlorophyll:carbon ratio – the conversation between productivity and growth. Limnol. Oceanogr. 1995;40(7):1310–1321. doi: 10.4319/lo.1995.40.7.1313
  13. Geider R.J., MacInture H.L., Kana T.M. A dynamic regulatory model of phytoplankton acclimation to light, nutrience and temperature. Mar. Ecol. Prog. Ser. 1997;148:187–200.
  14. Gevorgiz R.G., Trenkenshu R.P. Al'gologiia (Algologia). 1998;8(3):273–277 (in Russ.).
  15. Borovkov A.B. Mathematical model light depended pigments contents in microalgae cells for stationary dynamic balance chemostat cultures. Ekologiya morya. 2010;80:17–24.(in Russ.).
  16. Goericke R., Welschmeyer N.A. Pigment turnover in the marine diatom Thalassiosira weissflogii. 1. The 14ΡΞ2-labeling kinetics of chlorophylla. J. Phycol. 1992;28:498–507. doi: 10.1111/j.0022-3646.1992.00498.x
  17. Trenkenshu R.P. Influence of Light on Macromolecular Composition of Microalgae in Continuous Culture of Low Density (Part 1). Issues of Modern Algology. 2017;2(14) (in Russ.). http://algology.ru/1180 (accessed 18 September 2020).
  18. Lelekov A.S., Trenkenshu R.P. Basic principles of modeling microalgae's photobiosynthesis. Issues of Modern Algology. 2018;3(18) (in Russ.). doi: 10.33624/2311-0147-2018-3(18)-1-10
  19. Fiziologiia rastenii (Plant physiology): textbook. Ed. Ermakov I.P. Moscow, 2005. 640 p. (in Russ.).
  20. Rubin A.B., Krendeleva T.E. Uspekhi biologicheskoi khimii (Advances in biological chemistry) 2003;43:225–266 (in Russ.).
  21. Medvedev S.S. Fiziologiia rastenii (Plant physiology): textbook. Sankt-Peterburg, 2004. 336 p. (in Russ.).
  22. Ivlev A.A. Oscillatory character of carbon metabolism in photosynthesizing cell according to data on carbon isotope composition. Uspehi Sovremennoj Biologii. 2011;131(2):178–192 (in Russ.).
  23. Trenkenshu R.P. Influence of light on macromolecular composition of microalgae in continuous culture of low density (Part 2). Issues of Modern Algology. 2017;3 (in Russ.). http://algology.ru/1241 (accessed 18 September 2020).
  24. Avsiyan A.L. Dynamics of Loss of Biomass in Culture of Arthrospira Platensis (Nordst.) Geitler (Cyanoprokaryota) in Darkness. Al'gologiia (Algologia). 2014;24(3):417–420 (in Russ.).
  25. Torzillo G., Sacchi A., Materassi R., Richmond A. Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. J. Appl. Phycol. 1991;3:103–109. doi: 10.1007/BF00003691
  26. Geider R.J., Osborne B.A. Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. New Phytol. 1989;112(3):327–341. doi: 10.1111/j.1469-8137.1989.tb00321.x
  27. Langdon C. The significance of respiration in production measurements based on oxygen. ICES Mar. Sci. Symp. 1993;197:69–78.
  28. Drozdov-Tikhomirov L.N, Scurida G.I, Serganova V.V. Inner metabolic fluxes in multienzyme systems: lysine synthesis on acetate by Corynebacterium glutamicum. Biotechnologia (Moscow). 1986;2(8):28–37.
  29. Nazipova N.N., Elkin Yu.E., Panjukov V.V., Drozdov-Tikhomirov L.N. Rate calculation for metabolic reactions in a living and growing cell by the method of steady-state stoichiometric flux balance. Mathematical Biology and Bioinformatics. 2007;2(1):98–119. doi: 10.17537/2007.2.98
  30. Ogbonna J.C., Tanaka H. Night biomass loss and changes in biochemical composition of cells during light/dark cyclic culture of Chlorella pyrenoidosa. J. Ferm. Bioeng. 1996;82(6):558–564.
  31. Belianin V.N., Sid'ko F.Ia., Trenkenshu A.P. Energetika fotosinteziruiushchei kul'tury mikrovodoroslei (Energetics of photosynthetic culture of microalgae). Novosibirsk, 1980. 136 p. (in Russ.).
  32. Falkowski P.G., Owens T.G. Light-shade adaptation: two strategies in marine phytoplankton. Plant Physiol. 1980;66:592–595. doi: 10.1104/pp.66.4.592
  33. Zavorueva E.N., Zavoruev V.V., Krum S.P. Labil'nost' pervoi fotosistemy fototrofov v razlichnykh usloviiakh okruzhaiushchei sredy (Lability of the first photosystem of phototrophs under various environmental conditions) Krasnoiarsk, 2011. 152 p. (in Russ.).
  34. Kozel N.V., Domanskii V.P., Manankina E.E., Adamchyk K.O., Dremuk I.A., Savina S.M. The influence of the spectral composition of the led lighting on the structure of the photosynthetic apparatus of Spirulina platensis. Proceedings of the National Academy of Sciences of Belarus. 2015(2):44–49 (in Russ.).
  35. Efimova T.V. The effect of spectral light composition on cell pigment contents in microalgae. Marine ekological journal. 2011;2:22–28 (in Russ.).
  36. Terskov I.A., Trenkenshu R.P., Belianin V.N. Izvestiia Akademii nauk SSSR. Seriia biologicheskaia (Biology Bulletin of the Academy of Sciences of the USSR). 1981;2(10):103–108 (in Russ.).
Table of Contents Original Article
Math. Biol. Bioinf.
2020;15(2):158-171
doi: 10.17537/2020.15.158
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2022