Russian version English version
Volume 15   Issue 2   Year 2020
Shchetinin E.Yu.1, Demidova A.V.2, Kulyabov D.S.2, Sevastyanov L.A.2

Skin Lesion Classification Using Deep Learning Methods

Mathematical Biology & Bioinformatics. 2020;15(2):180-194.

doi: 10.17537/2020.15.180.


  1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics 2019. CA: a cancer journal for clinicians. 2019;69(1):7–34. doi: 10.3322/caac.21551
  2. American Cancer Society: Cancer facts and figures 2018. ( -: 09.07.2020).
  3. Robin Marks M.B.B.S. An overview of skin cancers. Cancer (Supplement). 1995;75(2):607–612. doi: 10.1002/1097-0142(19950115)75:2+<607::AID-CNCR2820751402>3.0.CO;2-8
  4. Rogers H.W., Weinstock M.A., Feldman S.R., Coldiron B.M. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatology. 2015;151(10):1081–1086. doi: 10.1001/jamadermatol.2015.1187
  5. Gandhi S.A., Kampp J. Skin cancer epidemiology, detection, and management. Medical Clinics. 2015;99(6):1323–1335. doi: 10.1016/j.mcna.2015.06.002
  6. Kittler H., Pehamberger H., Wolff K., Binder M. Diagnostic accuracy of dermoscopy. Lancet Oncology. 2002;3(3):159–165. doi: 10.1016/S1470-2045(02)00679-4
  7. Salerni G., Teran T., Puig S., Malvehy J., Zalaudek I., Argenziano G., Kittler H. Meta‐analysis of digital dermoscopy follow‐up of melanocytic skin lesions: a study on behalf of the International Dermoscopy Society. Journal of the European Academy of Dermatology and Venereology. 2013;27(7):805–814. doi: 10.1111/jdv.12032
  8. The International Symposium on Biomedical Imaging (ISBI2016). (accessed 09 July 2020).
  9. International Skin Imaging Collaboration: Melanoma Project Website. (accessed 09 July 2020).
  10. Dreiseitl S., Ohno-Machado L., Kittler H., Vinterbo S., Billhardt H., Binder M. A comparison of machine learning methods for the diagnosis of pigmented skin lesions. Journal of biomedical informatics. 2001;34(1):28–36. doi: 10.1006/jbin.2001.1004
  11. Esteva A., Kuprel B., Thrun S. Deep networks for early stage skin disease and skin cancer classification: Project Report. Stanford University, 2015.
  12. Harangi B. Skin lesion classification with ensembles of deep convolutional neural networks. Journal of biomedical informatics. 2018;86:25–32. doi: 10.1016/j.jbi.2018.08.006
  13. Yuan Y., Chao M., Lo Y.-C. Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Transactions on Medical Imaging. 2017;36(9):1876–1886. doi: 10.1109/TMI.2017.2695227
  14. Nasr-Esfahani E., Samavi S., Karimi N., Soroushmehr S.M.R., Jafari M.H., Ward K., Najarian K. Melanoma detection by analysis of clinical images using convolutional neural network. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, FL, 2016. P. 1373–1376. doi: 10.1109/EMBC.2016.7590963
  15. Giotis I., Molders N., Land S., Biehl M., Jonkman M.F., Petkov N. MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications. 2015;42(19):6578–6585. doi: 10.1016/j.eswa.2015.04.034
  16. Mahbod A., Schaefer G., Wang C., Ecker R., Ellinge I. Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019. P. 1229–1233. doi: 10.1109/ICASSP.2019.8683352
  17. Celebi M.E., Wen Q., Hwang S. Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods. Ski. Res. Technol. 2013;19(1):e252–e258. doi: 10.1111/j.1600-0846.2012.00636.x
  18. Hekler A., Utikal J.S., Enk A.H., Berking C., Klode J., Schadendorf D., Jansen P., Franklin C., Holland-Letz T., Krahl D., et al. Pathologist-level classification of histopathological melanoma images with deep neural networks. European Journal of Cancer. 2019;115:79–83. doi: 10.1016/j.ejca.2019.04.
  19. Esteva A., Kuprel B., Novoa R.A., Ko J., Swetter S.M., Blau H.M., Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–118. doi: 10.1038/nature22985
  20. Harangi B. Skin lesion classification with ensembles of deep convolutional neural networks. Journal of Biomedical Informatics. 2018;86:25–32. doi: 10.1016/j.jbi.2018.08.006
  21. Xie F., Bovik A.C. Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm. Pattern Recognition. 2013;46(3):1012–1019. doi: 10.1016/j.patcog.2012.08.012
  22. Codella N.C., Nguyen Q.B., Pankanti S., Gutman D.A., Helba B., Halpern A.C. Deep learning ensembles for melanoma recognition in dermoscopy images. IBM Journal of Research and Development. 2017;61(4):5–11. doi: 10.1147/JRD.2017.2708299
  23. Yu L., Chen H., Dou Q., Qin J., Heng P.A. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Transactions on Medical Imaging. 2016;36(4):994–1004. doi: 10.1109/TMI.2016.2642839
  24. Ballerini L., Fisher R.B., Aldridge B., Rees J. A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions. In: Color Medical Image Analysis. 2013. P. 63-86. Springer Netherlands. doi: 10.1007/978-94-007-5389-1_4
  25. Dermnet - Skin Disease Atlas. (accessed 09 July 2020).
  26. Keras. (accessed 09 July 2020).
  27. Gulli A., Pal S. Biblioteka Keras – instrument glubokogo obucheniia. Moscow, 2018. 294 p. (Translation of: Gulli A., Pal S. Deep Learning with Keras. Implement neural networks with Keras on Theano and TensorFlow. 600 p. Packt Publishing, 2017).
  28. ImageNet. (accessed 09 July 2020).
  29. GitHub. (accessed 09 July 2020).
  30. Fawcett T. An Introduction to ROC Analysis. Pattern Recognition Letters. 2006;27(8):861–874. doi: 10.1016/j.patrec.2005.10.010
  31. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830.
  32. Sevastianov L.A., Shchetinin E.Yu. On methods for improving the accuracy of multiclass classification on imbalanced data. Inform. Primen. 2020;14(1):63-70 (in Russ.). doi: 10.14357/19922264200109
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2020.15.180
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2022