Russian version English version
Volume 15   Issue 2   Year 2020
Shchetinin E.Yu.1, Demidova A.V.2, Kulyabov D.S.2, Sevastyanov L.A.2

Skin Lesion Classification Using Deep Learning Methods

Mathematical Biology & Bioinformatics. 2020;15(2):180-194.

doi: 10.17537/2020.15.180.

References

  1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics 2019. CA: a cancer journal for clinicians. 2019;69(1):7–34. doi: 10.3322/caac.21551
  2. American Cancer Society: Cancer facts and figures 2018. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/an-nual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf. ( -: 09.07.2020).
  3. Robin Marks M.B.B.S. An overview of skin cancers. Cancer (Supplement). 1995;75(2):607–612. doi: 10.1002/1097-0142(19950115)75:2+<607::AID-CNCR2820751402>3.0.CO;2-8
  4. Rogers H.W., Weinstock M.A., Feldman S.R., Coldiron B.M. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatology. 2015;151(10):1081–1086. doi: 10.1001/jamadermatol.2015.1187
  5. Gandhi S.A., Kampp J. Skin cancer epidemiology, detection, and management. Medical Clinics. 2015;99(6):1323–1335. doi: 10.1016/j.mcna.2015.06.002
  6. Kittler H., Pehamberger H., Wolff K., Binder M. Diagnostic accuracy of dermoscopy. Lancet Oncology. 2002;3(3):159–165. doi: 10.1016/S1470-2045(02)00679-4
  7. Salerni G., Teran T., Puig S., Malvehy J., Zalaudek I., Argenziano G., Kittler H. Meta‐analysis of digital dermoscopy follow‐up of melanocytic skin lesions: a study on behalf of the International Dermoscopy Society. Journal of the European Academy of Dermatology and Venereology. 2013;27(7):805–814. doi: 10.1111/jdv.12032
  8. The International Symposium on Biomedical Imaging (ISBI2016). https://biomedicalimaging.org/2016/ (accessed 09 July 2020).
  9. International Skin Imaging Collaboration: Melanoma Project Website. https://isic-archive.com/ (accessed 09 July 2020).
  10. Dreiseitl S., Ohno-Machado L., Kittler H., Vinterbo S., Billhardt H., Binder M. A comparison of machine learning methods for the diagnosis of pigmented skin lesions. Journal of biomedical informatics. 2001;34(1):28–36. doi: 10.1006/jbin.2001.1004
  11. Esteva A., Kuprel B., Thrun S. Deep networks for early stage skin disease and skin cancer classification: Project Report. Stanford University, 2015.
  12. Harangi B. Skin lesion classification with ensembles of deep convolutional neural networks. Journal of biomedical informatics. 2018;86:25–32. doi: 10.1016/j.jbi.2018.08.006
  13. Yuan Y., Chao M., Lo Y.-C. Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Transactions on Medical Imaging. 2017;36(9):1876–1886. doi: 10.1109/TMI.2017.2695227
  14. Nasr-Esfahani E., Samavi S., Karimi N., Soroushmehr S.M.R., Jafari M.H., Ward K., Najarian K. Melanoma detection by analysis of clinical images using convolutional neural network. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, FL, 2016. P. 1373–1376. doi: 10.1109/EMBC.2016.7590963
  15. Giotis I., Molders N., Land S., Biehl M., Jonkman M.F., Petkov N. MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems with Applications. 2015;42(19):6578–6585. doi: 10.1016/j.eswa.2015.04.034
  16. Mahbod A., Schaefer G., Wang C., Ecker R., Ellinge I. Skin lesion classification using hybrid deep neural networks. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019. P. 1229–1233. doi: 10.1109/ICASSP.2019.8683352
  17. Celebi M.E., Wen Q., Hwang S. Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods. Ski. Res. Technol. 2013;19(1):e252–e258. doi: 10.1111/j.1600-0846.2012.00636.x
  18. Hekler A., Utikal J.S., Enk A.H., Berking C., Klode J., Schadendorf D., Jansen P., Franklin C., Holland-Letz T., Krahl D., et al. Pathologist-level classification of histopathological melanoma images with deep neural networks. European Journal of Cancer. 2019;115:79–83. doi: 10.1016/j.ejca.2019.04.
  19. Esteva A., Kuprel B., Novoa R.A., Ko J., Swetter S.M., Blau H.M., Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–118. doi: 10.1038/nature22985
  20. Harangi B. Skin lesion classification with ensembles of deep convolutional neural networks. Journal of Biomedical Informatics. 2018;86:25–32. doi: 10.1016/j.jbi.2018.08.006
  21. Xie F., Bovik A.C. Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm. Pattern Recognition. 2013;46(3):1012–1019. doi: 10.1016/j.patcog.2012.08.012
  22. Codella N.C., Nguyen Q.B., Pankanti S., Gutman D.A., Helba B., Halpern A.C. Deep learning ensembles for melanoma recognition in dermoscopy images. IBM Journal of Research and Development. 2017;61(4):5–11. doi: 10.1147/JRD.2017.2708299
  23. Yu L., Chen H., Dou Q., Qin J., Heng P.A. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Transactions on Medical Imaging. 2016;36(4):994–1004. doi: 10.1109/TMI.2016.2642839
  24. Ballerini L., Fisher R.B., Aldridge B., Rees J. A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions. In: Color Medical Image Analysis. 2013. P. 63-86. Springer Netherlands. doi: 10.1007/978-94-007-5389-1_4
  25. Dermnet - Skin Disease Atlas. https://www.linksmedicus.com/main-menu/medical-images/dermnet-skin-disease-atlas/ (accessed 09 July 2020).
  26. Keras. https://keras.io. (accessed 09 July 2020).
  27. Gulli A., Pal S. Biblioteka Keras – instrument glubokogo obucheniia. Moscow, 2018. 294 p. (Translation of: Gulli A., Pal S. Deep Learning with Keras. Implement neural networks with Keras on Theano and TensorFlow. 600 p. Packt Publishing, 2017).
  28. ImageNet. http://www.image-net.org/ (accessed 09 July 2020).
  29. GitHub. https://github.com/fastai/fastai/ (accessed 09 July 2020).
  30. Fawcett T. An Introduction to ROC Analysis. Pattern Recognition Letters. 2006;27(8):861–874. doi: 10.1016/j.patrec.2005.10.010
  31. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–2830.
  32. Sevastianov L.A., Shchetinin E.Yu. On methods for improving the accuracy of multiclass classification on imbalanced data. Inform. Primen. 2020;14(1):63-70 (in Russ.). doi: 10.14357/19922264200109
Table of Contents Original Article
Math. Biol. Bioinf.
2020;15(2):180-194
doi: 10.17537/2020.15.180
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2022