Russian version English version
Volume 15   Issue 2   Year 2020
Nibedita Dash, Sarita Singh

Analytical Study of Non-Newtonian ReinerľRivlin Model for Blood flow through Tapered Stenotic Artery

Mathematical Biology & Bioinformatics. 2020;15(2):295-312.

doi: 10.17537/2020.15.295.

References

  1. Lim S.S., Vos T. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2012;380:2224–2260. doi: 10.1016/S0140-6736(12)61766-8
  2. Young D.F. Fluid mechanics of arterial stenosis. J. Biomech. Eng. 1979;101:157–175. doi: 10.1115/1.3426241
  3. Young D.F. Effect of a time-dependent stenosis on flow through a tube. J. Manuf. Sci. Eng. 1968;90:248–254. doi: 10.1115/1.3604621
  4. Young D.F., Tsai F.Y. Flow characteristics in models of arterial stenosis I. Steady flow. J. Biomech. 1973;6:395–402.
  5. Padmanabhan N. Mathematical model of arterial stenosis. Med. Biol. Eng. Comput. 1980;18:281–286. doi: 10.1007/BF02443380
  6. Sapna S. Analysis of non-Newtonian fluid flow in a stenosed artery. Int. J. Phys. Sci. 2009;4(11):663–671.
  7. Cokelet G.R., Merrill E.W., Gilliland E.R., Singh H. The Rheology of Human Blood Measurement near and at Zero Shear Rate. Trans. Soc. Rheol. 1963;7:303–317.
  8. Goldsmith H.L., Skalak R. Hemodynamics. In: Annual Review of Fluid Dynamics. Annual Review Inc. Pato. Alto. Pub., 1975. P. 231–247. doi: 10.1146/annurev.fl.07.010175.001241
  9. Smith N.P., Pullan A.J., Hunter P.J. An Anatomically Based Mode for Transient Coronary Blood Flow in the Heart. SIAM J. Appl. Math. 2002;62(3):990–1018.
  10. Anastasiou A.D., Spyrogianni A.S., Koskinas K.C., Giannoglou G.D., Paras S.V. Experimental investigation of the flow of a blood analogue fluid in a replica of a bifurcated small artery. Medical Engineering & Physics. 2012;34:211–218. doi: 10.1016/j.medengphy.2011.07.012
  11. Yilmaz F., Gundogdu M.Y. A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea-Australia Rheology Journal. 2008;20(4):197–211.
  12. Mekheimer Kh.S., El Kot M.A. Mathematical modelling of unsteady flow of a Sisko fluid through an anisotropically tapered elastic arteries with time-variant overlapping stenosis. Applied Mathematical Modelling. 2012;36:5393–5407. doi: 10.1016/j.apm.2011.12.051
  13. Antonova N. On Some Mathematical Models in Hemorheology. Biotechnology & Biotechnological Equipment. 2012;26(5):3286–3291. doi: 10.5504/BBEQ.2012.0069
  14. Thomas B., Suman K.S. Blood Flow in Human Arterial System-A Review. Procedia Technology. 2016;24:339–346. doi: 10.1016/j.protcy.2016.05.045
  15. Verma V.K. Study of Non-Newtonian Herschel-Bulkley Model through Stenosed Arteries. International Journal of Mathematics and its Applications. 2016;4:105–111.
  16. Jahangiri M., Saghafian M., Sadeghi M.R. Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery. Jl. of Computational and Applied Research in Mechanical Engineering. 2018;29(7):199–207.
  17. Tu C., Deville M. Pulsatile flow of non-Newtonian fluids through arterial stenoses. Journal of Biomechanics. 1996;29(7):899–908. doi: 10.1016/0021-9290(95)00151-4
  18. Sankar D.S., Yatim Y. Comparative Analysis of Mathematical Models for Blood Flow in Tapered Constricted Arteries. Abstract and Applied Analysis. 2012. Article ID 235960. doi: 10.1155/2012/235960
  19. Tesch K. Generalised Herschel model applied to blood flow modelling. Task Quarterly. 2012;16(3–4):253–262.
  20. Verma V.K. Study of Non-Newtonian Herschel-Bulkley Model through Stenosed Arteries. International Journal of Mathematics and its application. 2016;4(1-B):105–111.
  21. Iida N. Influence of plasma layer on steady blood flow in micro vessels. Japanese Journal of Applied Physics. 1978;17:203–214. doi: 10.1143/JJAP.17.203
  22. Chaturani P., Palanisamy V. Casson fluid model for pulsatile flow of blood under periodic body acceleration. Biorheology. 1990;27(5):619–630. doi: 10.3233/BIR-1990-27501
  23. O'Callaghan S., Walsh M., McGloughlin T. Numerical modelling of Newtonian and non-Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis. Med. Eng. Phys. 2006;28:70–74.
  24. Hall P. Viscous flow in a pipe of slowly varying crosssection. J. Fluid Mech. 1974;64:209–226. doi: 10.1017/S0022112074002369
  25. Porenta G., Young G.F., Rogge T.R. A finite element model of blood flow in arteries including taper, branches and obstructions. J. Biomech. Eng. 1986;108:161–167.
  26. Greensmith H.W., Rivlin R.S. The Hydrodynamics of non-Newtonian fluids III. Theoretical stress effect in polymer solutions. Phil. Trans. Roy. Soc. London. 1953;245:399.
  27. Mekheimer Kh.S., El Kot M.A. The micropolar fluid model for blood flow through a tapered artery with a stenosis. Acta Mech. Sin. 2008;24:637–644.
  28. Akbar N.S., Nadeem S., Mekheimer Kh.S. Rheological properties of Reiner – Rivlin fluid model for blood flow through tapered artery with stenosis. Journal of the Egyptian Mathematical Society. 2016;24:138–142. doi: 10.1016/j.joems.2014.10.007
  29. Rathna S.L., Bhatnagar P.L. Weissenberg and Merrington effects in non-newtonian fluids. Jl. of Indian Institute of Science. 1962;45(3):57–82.
  30. Narasimham M.N.L. On steady laminar flow of certain non-Newtonian liquids through an elastic tube. Proceedings of Indian Academy of Sciences. 1956;43(4):237–246. doi: 10.1007/BF03052741
  31. Srivastava V.P. Arterial blood flow through a nonsymmetrical stenosis with applications. Jpn. J. Appl. Phys. 1995;34:6539–6545. doi: 10.1143/JJAP.34.6539

 

Table of Contents Original Article
Math. Biol. Bioinf.
2020;15(2):295-312
doi: 10.17537/2020.15.295
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)
References

 

  Copyright IMPB RAS © 2005-2022