Russian version English version
Volume 16   Issue 1   Year 2021
Onishchenko P.1,2, Zakharov Yu.1,3, Borisov V.1,3, Klyshnikov K.2, Ovcharenko E.2, Kudravceva Yu.2, Shokin Yu.1

Modeling of Hemodynamics in a Vascular Bioprosthesis

Mathematical Biology & Bioinformatics. 2021;16(1):15-28.

doi: 10.17537/2021.16.15.


  1. Bokeriia L.A., Gudkova R.G., Milievskaia E.B., Kudzoeva Z.F., Prianishnikov V.V. Serdechno-sosudistaia khirurgiia - 2016. Bolezni i vrozhdennye anomalii sistemy krovoobrashcheniia (Cardiovascular surgery - 2016. Diseases and congenital anomalies of the circulatory system). Moscow, 2017. ISBN: 978-5-7982-0382-6 (in Russ.).
  2. Ravi S., Qu Z., Chaikof E.L. Polymeric Materials for Tissue Engineering of Arterial Substitutes. Vascular. 2009;17:45-54. doi: 10.2310/6670.2008.00084
  3. Töpel I., Uhl C., Ayx I. Steinbauer M. Xenografts in septic vascular surgery. Gefasschirurgie. 2016;21(2):55-58. doi: 10.1007/s00772-016-0160-8
  4. Klyshnikov K.U., Ovcharenko E.A., Borisov V.G., Sizova I.N., Burkov N.N., Batranin A.V., Kudryavtseva Y.A., Zaharov Yu.N., Shokin Yu.I. Modeling of the hemodynamics of vascular prostheses "Kemangiprotez" in Silico. Mathematical Biology and Bioinformatics. 2017;12(2):559-569. doi: 10.17537/2017.12.559
  5. Ballyk P.D., Walsh C., Butany J., Ojha M. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J. Biomech. 1998;31:229-237. doi: 10.1016/S0197-3975(97)00111-5
  6. Zonnebeld N., Huberts W., van Loon M.M., Delhaas T., Tordoir J.H.M. Preoperative computer simulation for planning of vascular access surgery in hemodialysis patients. The Journal of Vascular Access. 2017;18(1):118-124. doi: 10.5301/jva.5000661
  7. Mohammadi H., Lessard S., Therasse E., Mongrain R., Soulez G. A Numerical Preoperative Planning Model to Predict Arterial Deformations in Endovascular Aortic Aneurysm Repair. Annals of Biomedical Engineering. 2018;46(12):2148-2161. doi: 10.1007/s10439-018-2093-8
  8. Rukhlenko O.S., Dudchenko O.A., Zlobina K.E., Guria G.T. Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress. PLoS ONE. 2015;10(7). doi: 10.1371/journal.pone.0134028
  9. Schiller N.K., Franz T., Weerasekara N.S., Zilla P., Reddy B.D. A simple fluid-structure coupling algorithm for the study of the anastomotic mechanics of vascular grafts. Computer Methods in Biomechanics and Biomedical Engineering. 2010;13(6):773-781. doi: 10.1080/10255841003606124
  10. Fojas J., De Leon R., Carotid Artery Modeling Using the Navier-Stokes Equations for an Incompressible, Newtonian and Axisymmetric Flow. APCBEE Procedia. 2013;7:86-92. doi: 10.1016/j.apcbee.2013.08.017
  11. Gaurav V., Katiyar V. Computational Study of Steady Blood Flow Simulation in a Complete Coronary Artery Bypass Anastomosis Model. CJPAS. 2007;1:103-109.
  12. Yeow S.L., Leo H.L. Hemodynamic Study of Flow Remodeling Stent Graft for the Treatment of Highly Angulated Abdominal Aortic Aneurysm. Comput. Math. Methods Med. 2016. doi: 10.1155/2016/3830123
  13. Wen J., Zheng T.H., Jiang W.T., Deng X.Y., Fan Y.B. A comparative study of helical-type and traditional-type artery bypass grafts: numerical simulation. ASAIO J. 2011;57(5):399-406. doi: 10.1097/MAT.0b013e3182246e0a
  14. Pinto S., Doutel E., Campos J., Miranda J. Blood analog fluid flow in vessels with stenosis: Development of an openfoam code to simulate pulsatile flow and elasticity of the fluid. APCBEE Procedia. 2013;7:73-79. doi: 10.1016/j.apcbee.2013.08.015
  15. Lin C.-L., Srivastava A., Coffey D., Keefe D., Horner M., Swenson M., Erdman A. A System for Optimizing Medical Device Development Using Finite Element Analysis Predictions. Journal of Medical Devices. 2014;8(2):0209411-0209413. doi: 10.1115/1.4027096
  16. Morgan A.E., Pantoja J.L., Weinsaft J., Grossi E., Guccione J.M., Ge L., Ratcliffe M. Finite Element Modeling of Mitral Valve Repair. J. Biomech. Eng. 2016;138(2):0210091-0210098. doi: 10.1115/1.4032125
  17. Lee L.C., Ge L., Zhang Z., Pease M., Nikolic S.D., Mishra R., Guccione J.M. Patient-specific finite element modeling of the Cardiokinetix Parachute device: Effects on left ventricular wall stress and function. Med. Biol. Eng. Comput. 2014;52(6):557-566. doi: 10.1007/s11517-014-1159-5
  18. Boyd A., Kuhn D., Lozowy R., Kulbisky G. Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture. Basic Research Study. 2016;63(6):1613-1619. doi: 10.1016/j.jvs.2015.01.040
  19. Gharahi H., Zambrano B., Zhu D., DeMarco K., Baek S. Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging. Int. J. Adv. Eng. Sci. Appl. Math. 2016;8(1):40-60. doi: 10.1007/s12572-016-0161-6
  20. Geers A.J., Morales H.G., Larrabide I., Butakoff C., Bijlenga P., Frangi A.F. Wall shear stress at the initiation site of cerebral aneurysms. Biomech. Model. Mechanobiol. 2016;16:97-115. doi: 10.1007/s10237-016-0804-3
  21. Burkov N.N., Kudryavtseva Yu.A., Zhuchkova E.A., Barbarash L.S. Long-Term Results Of Application Of Bioprostheses «KemAngioprosthesis» Modified Low Molecular Weight Heparin, In Infrainguinal Position. Medicine in Kuzbass. 2016;15(1):53-58 (in Russ.).
  22. Razzaq M., Turek S., Hron J., Acker J.F., Weichert F., Wagner M., Grunwald I.Q., Roth C., Romeike B.F. Numerical simulation of fluid-structure interaction with application to aneurysm hemodynamics. Technical University, Fakultat fur Mathematik. 2009. doi: 10.1142/9789814299336_0003
  23. Klyshnikov K.U., Ovcharenko E.A., Ganyukov V.I., Tarasov R.S., Kokov A.N., Barbarass L.S. Algorithm for Reconstructing a 3D Model of the Aortic Root Using Uniform Crushing of CT Images. Modern Technologies in Medicine. 2018;10(4):283-294. doi: 10.17691/stm2018.10.4.01
  24. Caro C., Pedley T., Schroter R., Seed W., Parker K. The Mechanics of the Circulation. Cambridge: Cambridge University Press, 2011.
  25. Ku D.N. Blood flow in arteries. Annual Review of Fluid Mechanics. 1997;29(1):399-434. doi: 10.1146/annurev.fluid.29.1.399
  26. Ferziger J.H., Perić M., Street R.L. Computational Methods for Fluid Dynamics. 3rd Ed. Berlin: Springer, 2001. doi: 10.1007/978-3-642-56026-2
  27. SALOME, ξpen source integration platform for numerical simulation. (accessed 26 January 2021).
  28. The OpenFOAM Foundation. OpenCFD, OpenFOAM user guide. (accessed 26 January 2021).
  29. Issa R.I. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics. 1985;62(1):40-65. doi: 10.1016/0021-9991(86)90099-9
  30. Ayachit U. The ParaView Guide: A Parallel Visualization Application. Kitware, Incorporated, 2015.
  31. Loitsianskii L.G. Mekhanika zhidkosti i gaza (Fluid and Gas Mechanics ). Moscow, 2003. 840 p. ISBN: 5-7107-6327-6 (in Russ.).
  32. Buono M.J., Krippes T., Kolkhorst F.W., Williams A.T., Cabrales P. Increases in core temperature counterbalance effects of hemoconcentration on blood viscosity during prolonged exercise in the heat. Exp. Physiol. 2016;101(2):332-342. doi: 10.1113/EP085504
  33. Totorean A.F., Bernad S.I., Hudrea I.C., Susan-Resiga R.F. Competitive flow and anastomosis angle influence on bypass hemodynamics in unsteady flow conditions. AIP Conference Proceedings. 2017;1863(1):030013. doi: 10.1063/1.4992166
  34. Shintani Y., Iino K., Yamamoto Y., Kato H., Takemura H., Kiwata T. Analysis of Computational Fluid Dynamics and Particle Image Velocimetry Models of Distal-End Side-to-Side and End-to-Side Anastomoses for Coronary Artery Bypass Grafting in a Pulsatile Flow. Circulation Journal. 2017;82(1):110-117. doi: 10.1253/circj.CJ-17-0381
  35. Olufsen M.S., Peskin C.S., Kim W.Y., Pedersen E.M., Nadim A., Larsen J. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 2000;28(11):1281-1299.
  36. Keshmiri A., Ruiz-Soler A., McElroy M., Kabinejadian F. Numerical investigation on the geometrical effects of novel graft designs for peripheral artery bypass surgery. Procedia CIRP. 2016;49:147-152. doi: 10.1016/j.procir.2015.11.005
  37. Sanders J.S., Mark A.L., Ferguson D.W. Importance of aortic baroreflex in regulation of sympathetic responses during hypotension. Evidence from direct sympathetic nerve recordings in humans. Circulation. 1989;79(1):83-92. doi: 10.1161/01.CIR.79.1.83
  38. Freitag M.H., Vasan R.S. What is normal blood pressure? Curr. Opin. Nephrol. Hypertens. 2003;12(3):285-292.
  39. Di Achille P., Tellides G., Figueroa C.A., Humphrey J.D. A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014;470(2172):20140163. doi: 10.1016/j.procir.2015.11.005
  40. Diamond S.L. Systems analysis of thrombus formation. Circ. Res. 2016;118(9):1348-1362. doi: 10.1161/CIRCRESAHA.115.306824
  41. Casa L.D., Deaton D.H., Ku D.N. Role of high shear rate in thrombosis. J. Vasc. Surg. 2015;61(4):1068-1080. doi: 10.1016/j.jvs.2014.12.050
  42. Ruggeri Z.M. The role of von Willebrand factor in thrombus formation. Thromb. Res. 2007;120(1):5-9. doi: 10.1016/j.thromres.2007.03.011
  43. Hull J.E., Balakin B.V., Kellerman B.M., Wrolstad D.K. Computational fluid dynamic evaluation of the side-to-side anastomosis for arteriovenous fistula. J. Vasc. Surg. 2013;58(1):110-117. doi: 10.1016/j.jvs.2012.10.070
  44. de Andrade Silva J., Karam-Filho J., Borges C.C.H. Computational analysis of anastomotic angles by blood flow conditions in side-to-end radio-cephalic fistulae used in hemodialysis. J. Biomed. Sc. Eng. 2015;8(03):131-141. doi: 10.4236/jbise.2015.83013
  45. Giordana S., Sherwin S.J., Peiró J., Doorly D.J., Crane J.S., Lee K.E., Cheshire N.J., Caro C.G. Local and global geometric influence on steady flow in distal anastomoses of peripheral bypass grafts. Journal of Biomechanical Engineering. 2005;127(7):1087-1098. doi: 10.1115/1.2073507
  46. Rumbaut R.E., Thiagarajan P. Platelet-vessel wall interactions in hemostasis and thrombosis. Synthesis Lectures on Integrated Systems Physiology: From Molecule to Function. 2010;2(1):1-75. doi: 10.4199/C00007ED1V01Y201002ISP004
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2021.16.15
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024