Russian version English version
Volume 16   Issue 1   Year 2021
Fritsler Y.1, Bartsev S.2, Belozor O.3, Shuvaev Ant.3, Shuvaev And.1

Modifying the Models of Calcium Dynamics in Astrocytes by Ryanodine Release

Mathematical Biology & Bioinformatics. 2021;16(1):86-100.

doi: 10.17537/2021.16.86.


  1. Bazargani N., Attwell D. Astrocyte calcium signaling: the third wave. Nature Neuroscience. 2016;19(2):182-189. doi: 10.1038/nn.4201
  2. Okubo Y., Kanemaru K., Suzuki J., Kobayashi K., Hirose K., Iino M. Inositol 1, 4, 5-trisphosphate receptor type 2-independent Ca2+ release from the endoplasmic reticulum in astrocytes. Glia. 2019;67(1):113-124. doi: 10.1002/glia.23531
  3. Siekmann I., Wagner L.I., Yule D., Crampin E.J, Sneyd J. A kinetic model for type I and II IP3R accounting for mode changes. Biophysical Journal. 2012;103(4):658-668. doi: 10.1016/j.bpj.2012.07.016
  4. Shuai J., Pearson J.E., Foskett J.K., Mak D.-O. D., Parker I. A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback. Biophysical Journal. 2007;93(4):1151-1162. doi: 10.1529/biophysj.107.108795
  5. Fiacco T.A., McCarthy K.D. Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia. 2006;54(7):676-690. doi: 10.1002/glia.20396
  6. Beck A., Nieden R.Z., Schneider H.-P., Deitmer J.W. Calcium release from intracellular stores in rodent astrocytes and neurons in situ. Cell Calcium. 2004;35(1):47-58. doi: 10.1016/S0143-4160(03)00171-4
  7. Parri H.R., Crunelli V. The role of Ca2+ in the generation of spontaneous astrocytic Ca2+ oscillations. Neuroscience. 2003;120(4):979-992. doi: 10.1016/S0306-4522(03)00379-8
  8. Aley K.P., Murray J.H., Boyle J.P., Pearson H.A., Peers C. Hypoxia stimulates ca2+ release from intracellular stores in astrocytes via cyclic adp ribose-mediated activation of ryanodine receptors. Cell Calcium. 2006;39(1):95-100. doi: 10.1016/j.ceca.2005.09.009
  9. Manninen T., Havela R., Linne M.-L. Reproducibility and comparability of computational models for astrocyte calcium excitability. Frontiers in Neuroinformatics. 2017;11:11. doi: 10.3389/fninf.2017.00011
  10. Manninen T., Havela R., Linne M.-L. Computational models for calcium-mediated astrocyte functions. Frontiers in Computational Neuroscience. 2018;12:14. doi: 10.3389/fncom.2018.00014
  11. Manninen T., Saudargiene A., Linne M. L. Astrocyte-mediated spike-timing-dependent long-term depression modulates synaptic properties in the developing cortex. PLoS Computational Biology. 2020;16(11):e1008360. doi: 10.1371/journal.pcbi.1008360
  12. Lavrentovich M., Hemkin S. A mathematical model of spontaneous calcium (ii) oscillations in astrocytes. Journal of Theoretical Biology. 2008;251(4):553-560. doi: 10.1016/j.jtbi.2007.12.011
  13. Riera J., Hatanaka R., Ozaki T., Kawashima R. Modeling the spontaneous Ca2+ oscillations in astrocytes: inconsistencies and usefulness. Journal of Integrative Neuroscience. 2011;10(4):439-473. doi: 10.1142/S0219635211002877
  14. Riera J., Hatanaka R., Uchida T., Ozaki T., Kawashima R. Quantifying the uncertainty of spontaneous Ca2+ oscillations in astrocytes: particulars of Alzheimer’s disease. Biophysical Journal. 2011;101(3):554-564. doi: 10.1016/j.bpj.2011.06.041
  15. De Pittà M., Goldberg M., Volman V., Berry H., Ben-Jacob E. Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes. Journal of Biological Physics. 2009;35(4):383-411. doi: 10.1007/s10867-009-9155-y
  16. Dupont G., Loomekandja Lokenye E.F., Challiss RA J. A model for Ca2+ oscillations stimulated by the type 5 metabotropic glutamate receptor: an unusual mechanism based on repetitive, reversible phosphorylation of the receptor. Biochimie. 2011;93(12):2132-2138. doi: 10.1016/j.biochi.2011.09.010
  17. López-Caamal F., Oyarzún D.A., Middleton R.H., García M.R. Spatial quantification of cytosolic ca 2+ accumulation in nonexcitable cells: an analytical study. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB). 2014;11(3):592-603. doi: 10.1109/TCBB.2014.2316010
  18. Lehninger A.L. Mitochondria and calcium ion transport Biochemical Journal. 1970;119(2):129. doi: 10.1042/bj1190129
  19. Zeng S., Li B., Zeng S., Chen S. Simulation of spontaneous Ca2+ oscillations in astrocytes mediated by voltage-gated calcium channels. Biophysical Journal. 2009;97(9):2429-2437. doi: 10.1016/j.bpj.2009.08.030
  20. Keizer J., Levine L. Ryanodine receptor adaptation and Ca2+(-)induced Ca2+ release-dependent Ca2+ oscillations. Biophysical Journal. 1996;71(6):3477-3487. doi: 10.1016/S0006-3495(96)79543-7
  21. Politi A., Gaspers L.D., Thomas A.P., Höfer T. Models of IP3 and Ca2+ oscillations: Frequency encoding and identification of underlying feedbacks. Biophysical Journal. 2006;90(9):3120-3133. doi: 10.1529/biophysj.105.072249
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2021.16.86
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024