Russian version English version
Volume 16   Issue 1   Year 2021
References

  1. Bazargani N., Attwell D. Astrocyte calcium signaling: the third wave. Nature Neuroscience. 2016;19(2):182-189. doi: 10.1038/nn.4201
  2. Okubo Y., Kanemaru K., Suzuki J., Kobayashi K., Hirose K., Iino M. Inositol 1, 4, 5-trisphosphate receptor type 2-independent Ca2+ release from the endoplasmic reticulum in astrocytes. Glia. 2019;67(1):113-124. doi: 10.1002/glia.23531
  3. Siekmann I., Wagner L.I., Yule D., Crampin E.J, Sneyd J. A kinetic model for type I and II IP3R accounting for mode changes. Biophysical Journal. 2012;103(4):658-668. doi: 10.1016/j.bpj.2012.07.016
  4. Shuai J., Pearson J.E., Foskett J.K., Mak D.-O. D., Parker I. A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback. Biophysical Journal. 2007;93(4):1151-1162. doi: 10.1529/biophysj.107.108795
  5. Fiacco T.A., McCarthy K.D. Astrocyte calcium elevations: properties, propagation, and effects on brain signaling. Glia. 2006;54(7):676-690. doi: 10.1002/glia.20396
  6. Beck A., Nieden R.Z., Schneider H.-P., Deitmer J.W. Calcium release from intracellular stores in rodent astrocytes and neurons in situ. Cell Calcium. 2004;35(1):47-58. doi: 10.1016/S0143-4160(03)00171-4
  7. Parri H.R., Crunelli V. The role of Ca2+ in the generation of spontaneous astrocytic Ca2+ oscillations. Neuroscience. 2003;120(4):979-992. doi: 10.1016/S0306-4522(03)00379-8
  8. Aley K.P., Murray J.H., Boyle J.P., Pearson H.A., Peers C. Hypoxia stimulates ca2+ release from intracellular stores in astrocytes via cyclic adp ribose-mediated activation of ryanodine receptors. Cell Calcium. 2006;39(1):95-100. doi: 10.1016/j.ceca.2005.09.009
  9. Manninen T., Havela R., Linne M.-L. Reproducibility and comparability of computational models for astrocyte calcium excitability. Frontiers in Neuroinformatics. 2017;11:11. doi: 10.3389/fninf.2017.00011
  10. Manninen T., Havela R., Linne M.-L. Computational models for calcium-mediated astrocyte functions. Frontiers in Computational Neuroscience. 2018;12:14. doi: 10.3389/fncom.2018.00014
  11. Manninen T., Saudargiene A., Linne M. L. Astrocyte-mediated spike-timing-dependent long-term depression modulates synaptic properties in the developing cortex. PLoS Computational Biology. 2020;16(11):e1008360. doi: 10.1371/journal.pcbi.1008360
  12. Lavrentovich M., Hemkin S. A mathematical model of spontaneous calcium (ii) oscillations in astrocytes. Journal of Theoretical Biology. 2008;251(4):553-560. doi: 10.1016/j.jtbi.2007.12.011
  13. Riera J., Hatanaka R., Ozaki T., Kawashima R. Modeling the spontaneous Ca2+ oscillations in astrocytes: inconsistencies and usefulness. Journal of Integrative Neuroscience. 2011;10(4):439-473. doi: 10.1142/S0219635211002877
  14. Riera J., Hatanaka R., Uchida T., Ozaki T., Kawashima R. Quantifying the uncertainty of spontaneous Ca2+ oscillations in astrocytes: particulars of Alzheimer’s disease. Biophysical Journal. 2011;101(3):554-564. doi: 10.1016/j.bpj.2011.06.041
  15. De Pittà M., Goldberg M., Volman V., Berry H., Ben-Jacob E. Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes. Journal of Biological Physics. 2009;35(4):383-411. doi: 10.1007/s10867-009-9155-y
  16. Dupont G., Loomekandja Lokenye E.F., Challiss RA J. A model for Ca2+ oscillations stimulated by the type 5 metabotropic glutamate receptor: an unusual mechanism based on repetitive, reversible phosphorylation of the receptor. Biochimie. 2011;93(12):2132-2138. doi: 10.1016/j.biochi.2011.09.010
  17. López-Caamal F., Oyarzún D.A., Middleton R.H., García M.R. Spatial quantification of cytosolic ca 2+ accumulation in nonexcitable cells: an analytical study. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB). 2014;11(3):592-603. doi: 10.1109/TCBB.2014.2316010
  18. Lehninger A.L. Mitochondria and calcium ion transport Biochemical Journal. 1970;119(2):129. doi: 10.1042/bj1190129
  19. Zeng S., Li B., Zeng S., Chen S. Simulation of spontaneous Ca2+ oscillations in astrocytes mediated by voltage-gated calcium channels. Biophysical Journal. 2009;97(9):2429-2437. doi: 10.1016/j.bpj.2009.08.030
  20. Keizer J., Levine L. Ryanodine receptor adaptation and Ca2+(-)induced Ca2+ release-dependent Ca2+ oscillations. Biophysical Journal. 1996;71(6):3477-3487. doi: 10.1016/S0006-3495(96)79543-7
  21. Politi A., Gaspers L.D., Thomas A.P., Höfer T. Models of IP3 and Ca2+ oscillations: Frequency encoding and identification of underlying feedbacks. Biophysical Journal. 2006;90(9):3120-3133. doi: 10.1529/biophysj.105.072249
Table of Contents Original Article
Fritsler Y., Bartsev S., Belozor O., Shuvaev Ant., Shuvaev And. Modifying the Models of Calcium Dynamics in Astrocytes by Ryanodine Release. Ìàthematical biology and bioinformatics. 2021;16(1):86-100. doi: 10.17537/2021.16.86
(published in Russian)

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2025