Russian version English version
Volume 16   Issue 1   Year 2021
Levashkin S.P.1,2, Agapov S.N.1, Zakharova O.I.1, Ivanov K.N.1, Kuzmina E.S.1, Sokolovsky V.A.1, Monasova A.S.1, Vorobiev A.V.1, Apeshin D.N.1

Study of SEIRD Adaptive-Compartmental Model of COVID-19 Epidemic Spread in Russian Federation Using Optimization Methods

Mathematical Biology & Bioinformatics. 2021;16(1):136-151.

doi: 10.17537/2021.16.136.


  1. Bernoulli D. Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculum pour la prévenir. Mém. Math. Phys. Acad. Roy. Sci. Paris. 1760:1–45.
  2. Farr W. Progress of epidemics. 2d Report of the regist. London: General of England and Wales, 1840.
  3. En'ko P.L. Vrach (DOCTOR). 1889;46–48 (in Russ.).
  4. Ross R., Hudson H.P. An application of the theory of probabilities to the study of a priori pathometry. Proc. R. Soc. Lond. 1916-1917;A 93:212-240. doi: 10.1098/rspa.1917.0015
  5. Bailey N. Matematika v biologii i meditsine. Moscow, 1970. 326 p. (Translation of: Bailey N.T.J. The mathematical approach to biology and medicine. Wiley, 1967).
  6. Baroian O.V., Rvachev L.A. Matematika i epidemiologiia (Mathematics and Epidemiology). Moscow, 1977. 63 p. (in Russ.).
  7. Boev B.V. In: Epidemiologicheskaia kibernetika: modeli, informatsiia, eksperimenty (Epidemiological Cybernetics: Models, Information, Experiments). 1991:6–13. (in Russ.).
  8. Anderson R.M., May R.M. Infectious Diseases of Humans. Dynamics and Control. Oxford: Oxford University Press, 1991.
  9. Macdonald G. The measurement of malaria transmission. Proc. R. Soc. Med. 1955;48(4):295–302. doi: 10.1177/003591575504800409
  10. Hoppensteadt F. An age dependent epidemic model. Journal of the Franklin Institute. 1974:325–333. doi: 10.1016/0016-0032(74)90037-4
  11. Gupur G., Li Xue-Zhi, Zhu Guang-Tian. Threshold and Stability Results for an Age-Structured Epidemic Model. Computers and Mathematics with Applications. 2001;42:883–907. doi: 10.1016/S0898-1221(01)00206-1
  12. Park T. Age-dependence in epidemic models of vector-borne infections. Huntsville: The University of Alabama, 2004.
  13. Giordano G., Blanchini F., Bruno R., Colaneri P., Di Filippo A., Di Matteo A., Colaneri M. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature Medicine. 2020;26:855–860. doi: 10.1038/s41591-020-0883-7
  14. Bukin Iu.S., Dzhioev Iu.P., Bondariuk A.N., Tkachev S.E., Zlobin V.I. Primenenie universal'noi matematicheskoi modeli epidemicheskogo protsessa «SRID» dlia prognoza razvitiia epidemii COVID-19 v gorode Moskva (Application of the universal mathematical model of the epidemic process "SRID" to predict the development of the COVID-19 epidemic in the city of Moscow): preprint. 2020. 21 p. (in Russ.). doi: 10.24108/preprints-3112045
  15. Derrode S., Gauchon R., Ponthus N., Rigotti C., Pothier C., Volpert V., Loisel S., Bertoglio J.-P., Roy P. Piecewise estimation of R0 by a simple SEIR model. Application to COVID-19 in French regions and departments until June 30. Université Lyon 1 - Claude Bernard. 2020. (accessed 14.05.2020).
  16. Kochańczyk M., Grabowski F., Lipniacki T. Super-spreading events initiated the exponential growth phase of COVID-19 with ℛ0 higher than initially estimated. Biology, Medicine. Royal Society Open Science. 2020. Article No. 200786. doi: 10.1098/rsos.200786
  17. Wang X., Tang T., Cao L., Aihara K., Guo Q. Inferring key epidemiological parameters and transmission dinamics of COVID-19 based on a modifiend SEIR model. Math. Model. Nat. Phenom. 2020;15:74. Article No. 2020050. doi: 10.1051/mmnp/2020050
  18. Grigorieva E.V., Khailov E. N., Korobeinikov A. Optimal quarantine strategies for COVID-19 control models. arXiv:2004.10614 [math.OC] 2020. 21 p. (accessed 14.05.2020).
  19. Zhou X., Ma X.-d., Hong N., Su L., Ma Y., He J., Jiang H., Liu C., Shan G., Zhu W., Zhang S., Long Y. Forecasting the Worldwide Spread of COVID-19 based on Logistic Model and SEIR Model. 2020. Medicine, Geography. medRxiv. Article No. 20044289. doi: 10.1101/2020.03.26.20044289
  20. Lin Q., Zhao S., Gao D., Lou Y., Yang S., Musa S. S., Wang M.H., Cai Y., Wang W., Yang L., He D. A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. International Journal of Infectious Diseases. doi: 10.1016/j.ijid.2020.02.058
  21. Zamir M., Abdeljawad T., Nadeem F., Wahid A., Yousef A. An optimal control analysis of a COVID-19 model Author links open overlay panel. Alexandria Engineering Journal. 2021;60(3):2875-2884. doi: 10.1016/j.aej.2021.01.022
  22. Okhuese V.A., Mathematical predictions for COVID-19 as a global pandemic. medRxiv. 2020. doi: 10.1101/2020.03.19.20038794
  23. Zeng Y., Guo X., Deng Q., Luo S., Zhang H. Forecasting of COVID-19: spread with dynamic transmission rate. Journal of Safety Science and Resilience. 2020;1(2):91-96. doi: 10.1016/j.jnlssr.2020.07.003
  24. Tomchin D.A., Fradkov A.L. Prognozirovanie rasprostraneniia virusa COVID-19 v Rossii na osnove prostykh matematicheskikh modelei epidemii (Predicting the spread of the COVID-19 virus in Russia based on simple mathematical models of epidemics). St. Petersburg, 2020. 17 p. (in Russ.).
  25. Mamo D.K. Model the transmission dynamics of COVID-19 propagation with public health intervention. Results in Applied Mathematics. 2020;7. Article No. 100123. doi: 10.1016/j.rinam.2020.100123
  26. Garba S.M., Lubuma J.M.-S., Tsanou B. Modeling the transmission dynamics of the COVID-19 Pandemic in South Africa. Mathematical Biosciences. 2020;328. Article No. 108441. doi: 10.1016/j.mbs.2020.108441
  27. Aghdaoui H., Tilioua M., Sooppy Nisar K., Khan I. A Fractional Epidemic Model with Mittag-Leffler Kernel for COVID-19. Mathematical Biology and Bioinformatics. 2021;16(1):39-56. doi: 10.17537/2021.16.39
  28. Kondratyev M. Forecasting methods and models of disease spread. Computer Research and Modeling. 2013;5(5):863-882.(in Russ.). doi: 10.20537/2076-7633-2013-5-5-863-882
  29. Vasil'ev F.P. Metody optimizatsii (Optimization Methods). Moscow, 2002 (in Russ.).
  30. Krivorotko O., Kabanikhin S., Zyatkov N., Prikhod’ko A., Prokhoshin N., Shishlenin M. Mathematical modeling and prediction of COVID-19 in Moscow and Novosibirsk region. Numerical Analysis and Applications. 2020;13:332–348. doi: 10.1134/S1995423920040047
  31. He D., Dushoff J., Day T., Ma J., Earn D. J.-D. Inferring the causes of the three waves of the 1918 influenza pandemic in England and Wales. Proceedings of the Royal Society B: Biological Sciences. 2013. doi: 10.1098/rspb.2013.1345
  32. BlackBoxOptim.jl. (accessed 14.05.2020).
  33. Samorodskaia I.V. Medvestnik. 2020. (accessed 14.05.2020) (in Russ.).
  34. WHO. Clinical management of COVID-19: interim guidance, 27 May 2020. 2020. (accessed 14.05.2020).
  35. Anderson R.M., May R.M. Directly transmitted infectious diseases: Control by vaccination. Science. 1982:1053-1060. doi: 10.1126/science.7063839
  36. Roberts M., Heesterbeek H. Bluff your way in epidemic models. Trends in Microbiology. 1993;1(9):343–348. doi: 10.1016/0966-842X(93)90075-3
  37. Ferguson N.M., Keeling M.J., Edmunds W.J., Gani R., Grenfell B.T., Anderson R.M., Leach S. Planning for smallpox outbreaks. Nature. 2003;425(6959):681–685. doi: 10.1038/nature02007
  38. Frost I., Craig J., Osena G., Hauck S., Kalanxhi E., Schueller E., Gatalo O., Yan-y Y., Tseng K., Lin G., Klein E. Modeling COVID-19 Transmission in Africa: Country-wise Projections of Total and Severe Infections Under Different Lockdown Scenarios. medRxiv. 2020. Article No. 20188102. doi: 10.1101/2020.09.04.20188102
  39. Bertozzi A.L., Franco E., Mohler G., Short M.B., Sledge D. The challenges of modeling and forecasting the spread of COVID-19. PNAS. 2020;117(29):16732-16738. doi: 10.1073/pnas.2006520117
Table of Contents Original Article
Math. Biol. Bioinf.
doi: 10.17537/2021.16.136
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)


  Copyright IMPB RAS © 2005-2024